

Redshifted 21 cm measurements offer the most comprehensive view of the collective radiative processes of the earliest objects, including faint low-mass galaxies

- **Objective** : achieve noise-limited performance for the first time with the recently upgraded and expanded OVRO-LWA.
- For most existing arrays, observing the 21 cm signal in the Cosmic Dawn band is a post-hoc science goal.
- Upgraded OVRO-LWA is designed from the ground up and optimized for the CD band
- Upgrades have been targeted at reducing crucial spectral systematics that fundamentally limit all 21 cm instruments.

Will discuss

- Characterizing the OVRO-LWA beams
 - Chromaticity (variation with frequency)
 - Mutual coupling
 - Polarization leakage
- Forward modeling
 - Access effects of the beam, instrument on the science cases
 - Validation by simulation
- Delay Spectra analysis
 - Quantify the systematic effects

Beam Dream Team workshop, Jan 2023

Why do we care about the Beam?

The statistical detection of the Cosmological signal of interest can be via:

- Foreground removal
- Foreground avoidance

Effectiveness of either approach is limited by the beam convolved sky

Source peeling leads to residuals ~ level of signal of interest if we the knowledge of the beam limited

Beam convolves the foreground to higher k-modes reducing the window of cosmological detection

TLDR; I am my own problem

If we have to rely on beam modeling, pick the right EM solver!

<u>Main Capability</u>:Simulate real soil \Rightarrow infinite extents X and Y directions

Most EM solver techniques have a defined "simulation box" extents. From where low level artificial reflections occur.

MOM technique: This employs Green Function to solve for Farfields. And allows for realistic soil simulation (infinite extents in XY plane)

Possible packages:

- CST (I-solver)
- FEKO (MOM, Default)
- HFSS (IE)

Modeling a single LWA dipole in free space

Trusting simulations: Comparing the two softwares

S11/Reflection coeff Vs Frequency

How does one trust simulations? Need for Validation

Vinand has procured the LNA boards to make the in-situ S11 measurements

- Gain measurements from the field
 - Beam Holography (Vydula, ASU)
 - Memo describing the need, the sources that can be used.
 - Limitation: Mapping the entire beam with the needed accuracy
 - Possibilities: Measurements at a few viewing angles and complementing with simulations
 - Drone Measurements
 - Danny's talk
 - Established Linearity

Getting fancy: same LWA dipole now over soil

Table 1. Soil parameters for the one-layer and the multi-layer model, extracted from measurements of soil at the LWA site during both dry and wet conditions at depths z_i , i = 1, 2, 3.

Took some measurements from Spinelli+ 2022 \longrightarrow Soil layer parameters (σ in S/m, ϵ_r dimensionless)

Long term plan: install hygrometer and collect soil data to be input for simulations

	$\sigma_{ m dry}$	$\sigma_{ m wet}$	$\epsilon_{r,\mathrm{dry}}$	$\epsilon_{r,\text{wet}}$
one layer	0.004	0.01	4.4	6.5
$z_1 = 10.16 \ cm$	0.0013	0.005	3.73	8.09
$z_2 = 35.56 \ cm$	0.004	0.0068	4.25	6.45
$z_3 = 53.34 \ cm$	0.0187	0.0388	7.58	20.56

Comparison of Gain vs Freq of OVRO-LWA over soil (--) with cases:

We have all these simulations Lets, Access the Chromaticity !

- 1. Derivative plots (Mahesh++ 2021)
 - a. More qualitative
- 2. Delay Spectra analysis (Gehlot, Murray, ASU)
 - a. Quantitative and easier to quantify its effect on 21cm interferometric measurements

Beam derivatives on FEKO Simulations

Plot quantity: Gain derivatives (/1MHz)

Qualitatively: PEC has the least chromaticity, chromaticity of Over the soil is not as worse as the free space

Beam derivatives on CST Simulations

Plot quantity: Gain derivatives (/1MHz) *Qualitatively*: Similar to FEKO simulations. PEC case below <15 MHz; CST predicts worse chromaticity

Comparing with EDGES beams?

Over soil

Delay spectra analysis on the beam

10⁰ 10⁻¹ 10⁻² 10⁻³ 10⁻⁴ 10⁻⁴ 10⁻⁶ 10⁻⁶ 10⁻⁶ 10⁻⁰ 10⁻⁰ 10⁻⁰ 10⁻⁰ 10⁻⁰ 10⁻⁰ 10⁻¹ 10⁻² 10⁻³ 10⁻⁴ 10⁻² 10⁻³ 10⁻⁴ 10⁻⁵ 10⁻⁶ 10⁻⁶ 10⁻⁶ 10⁻⁰ 10⁻⁰ 10⁻⁰ 10⁻¹⁰ 10⁻² 10⁻³ 10⁻⁴ 10⁻⁵ 10⁻⁶ 10⁻⁷ 10⁻⁷

The maximum delay is set by the simulation resolution ~1MHz

PEC - Ideal case: The power is suppressed at delays > 100ns Or baselines> 60 m

Soil - realistic case: The desired suppression is at delays >200 ns or baselines > 120 m

Delay spectra analysis on the beam

The maximum delay is set by the simulation resolution ~1MHz

PEC - Ideal case: The power is suppressed at delays > 100ns Or baselines> 60 m

Soil - realistic case: The desired suppression is at delays >200 ns or baselines > 120 m

That discrepancy we saw between CST & FEKO < 15 MHz translates as higher power all delay modes > 100ns

At Zenith

Delay spectra analysis on the beam

At Zenith

The maximum delay is set by the simulation resolution ~1MHz

PEC - Ideal case: The power is suppressed at delays > 100ns Or baselines> 60 m

Soil - realistic case: The desired suppression is at delays >200 ns or baselines > 120 m

Direction dependent delay spectra for LWA over PEC

Direction dependent delay spectra for LWA over Soil

Direction dependent delay spectra for HERA Vivaldi

Plan for Mutual coupling effects

- Access the near field currents at locations of nearest neighbours
- Simulate a few near neighbours
 - Quantify chromaticity: Derivative plots, dspec plots
- As we keep adding antennas to the simulation Compare the simulation to calibrated visibilities

Electric field patterns of the LWA dipoles at 50 MHz

Ideal correction \Rightarrow M⁻¹ & M from the same beam _{50 MHz}

Error in Correction \Rightarrow M⁻¹ & M not from the same beam

Using J_soil to correct for J_space

The off diagonal terms are non-zero \Rightarrow leakage

Forward modeled a model sky through the OVRO-LWA

Primitive pipeline developed for FARSIDE (Mahesh++, in prep)

Forward modeling

Useful for:

- Testing instrumental effects (Beam), Ionosphere, range of systematics
- Power spectra of the known i/p can be used to verify that no signal was lost and the statistics match expectation.

Plan:

Forward model everything in the instrument pipeline

- Electromagnetic simulations of the beams
- lonosphere
- A full sky model of diffuse emission
- Point sources
- Accurate wide-field visibility simulation
- Thermal noise
- Range of systematics

Quality Assurance & Check-out

- Delay spectra analysis: An iterative development approach to Cosmic Dawn analysis on the OVRO-LWA
 - Fourier transforms of the visibilities along frequency
- Preliminary assessment and validation of early data
- Helps assess bandpass smoothness
- Used for sensitive diagnostics for common instrumental concerns
 - cable reflections (Katherine Elder's work)
 - cross-coupling,
 - stability,
 - and interference
- DS to yield the first 21 cm power spectrum limits from the project.

Simple DS {Kolopanis et al., 2019; Aguirre et al., 2021, and HERA Memos #87, #90}

Delay Spectra to analyse cable reflections (K.Elder, ASU)

Indicates cable reflection has indeed reduced in the upgraded system!

My favourite update: Absolute flux measurement

In collaboration with: Gregg Hallinan, Vinand Prayag (Caltech);

Andrew Romero-Wolf, Julie Rolla, Andrew Ludwig (JPL)

Science cases: Global 21cm measurement, Cosmic ray studies, complements *m*-mode maps.

Currently:

- Beam chromaticity analysis of the individual dipoles
- Simulating spectra (Residuals of beam convolved sky)
- Deciding Receiver scheme: absolute calibration (EDGES 3) Vs correlator receiver (SARAS 2)

Extras

3m x 3m + free space

Beam pattern as a function of frequency

Beam cuts as a function of frequency

Forward modeled a model sky through the OVRO-LWA

Primitive pipeline developed for FARSIDE (Mahesh++, in prep)

- 1. GLEAM point source sky (only Stokes I)
- 2. 2 different cases of OVRO-LWA beams
- 3. Array layout (flat sky approx.)

Direction dependent delay spectra for LWA+GP in free space

Direction dependent delay spectra for LWA over Soil

Error in Correction

Using J_perturb to correct for J_space M00 M01 M02 M03 $J_{pert} = \begin{bmatrix} E_{\theta}^{x} & E_{\phi}^{x} \\ E_{\theta}^{y} & E_{\phi}^{y} \end{bmatrix} + \begin{bmatrix} E_{\theta}^{x} & 0.1 * E_{\phi}^{x} \\ 0.1 * E_{\theta}^{y} & E_{\phi}^{y} \end{bmatrix}$ 1.00 0.000003 - 0.0002 - 0.00050 0.000002 0.99 - 0.00025 0.0001 0.000001 The off diagonal terms are non-zero \Rightarrow - 0.000000 M10 M12 M11 M13 leakage 1.00 0.000003 - 0.0075 0.004 0.000002 0.0050 - 0.99 0.002 0.000001 - 0.0025 0.000000 M21 M22 M2 3 - 1.00 - 0.00002 - 0.0075 - 0.0050 0.00050 - 0.99 0.00001 0.00025 0.0025 0.00000 M31 M30 M32 - 1.00 - 0.00002 - 0.0002 - 0.004 - 0.99 0.00001 - 0.0001 0.002

50 MHz

0.00000

Electric field patterns of the LWA dipoles over soil at 50 MHz

J = J_Soil - J_space

$$\begin{bmatrix} I_{xx}\\ I_{xy}\\ I_{yx}\\ I_{yy}\\ I_{yx}\\ I_{yy}\\ \end{bmatrix} = \begin{bmatrix} E_{\theta}^{x} & E_{\phi}^{x}\\ E_{\theta}^{y} & E_{\phi}^{y}\\ \end{bmatrix} \otimes \begin{bmatrix} E_{\theta}^{x} & E_{\phi}^{x}\\ E_{\theta}^{y} & E_{\phi}^{y}\\ \end{bmatrix}^{*} \begin{bmatrix} e_{xx}\\ e_{xy}\\ e_{yy}\\ e_{yy}\\ \end{bmatrix}^{T}$$

$$\begin{bmatrix} I\\ Q\\ U\\ V\\ \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1\\ 1 & 0 & 0 & -1\\ 0 & 1 & 1 & 0\\ 0 & -j & j & 0 \end{bmatrix} \begin{bmatrix} E_{\theta}^{x} & E_{\phi}^{x}\\ E_{\theta}^{y} & E_{\phi}^{y}\\ \end{bmatrix} \otimes \begin{bmatrix} E_{\theta}^{x} & E_{\phi}^{x}\\ E_{\theta}^{y} & E_{\phi}^{y}\\ \end{bmatrix}^{*} \begin{bmatrix} 1 & 0 & 0 & 1\\ 1 & 0 & 0 & -1\\ 0 & 1 & 1 & 0\\ 0 & -j & j & 0 \end{bmatrix}^{T} \begin{bmatrix} e_{xx}\\ e_{xy}\\ e_{yy}\\ e_{yy}\\ \end{bmatrix}$$
to get back the original:
$$M^{-1} \begin{bmatrix} I\\ Q\\ U\\ V\\ \end{bmatrix} = M^{-1}M \begin{bmatrix} e_{xx}\\ e_{xy}\\ e_{yy}\\ e_{yy}\\ \end{bmatrix}$$