

In a zoo of radio pulsars below 100 MHz

Pratik Kumar, Greg Taylor, Kevin Stovall, Jayce Dowell (UNM), Stephen White (AFRL/UNM)

Pulsars

- Pulsars are rotating magnetized neutron stars discovered by J. Bell-Burnell in 1967
- Steep spectrum ~ -1.4
- Extreme properties
 - masses ~ 1.4 solar mass
 - radii ~ 10 km
 - \circ magnetic field strength ~ 10^8 G
- □ Ideal probes of Interstellar Medium
 - Dispersion Measure
 - \circ Scattering
 - Rotation Measure

Credit: Joeri van Leeuwen

Long Wavelength Array (LWA)

Frequency Range: 3-88 MHz

First station ("LWA1") completed April 2011

Second NM station ("LWA-SV" completed July 2017

Next up: "LWA-NA" mini-station (64 dipoles) 2023 Construction

OVRO-LWA Imaging and Beamforming superstation

Observing Modes

- 256 dual-polarization antennas
- Distributed within a 100 x 110 m ellipse
- Two primary observing modes: Digital Beamforming and All-sky mode

LWA Pulsar Monitoring and Reduction

- Pulsar Observations Since 2013, Monitoring began in September 2015 (Stovall et. al. 2014)
- 108 Sources, including Pulsars, MSPs and RRATs
- Automated Robust observing with a Python based script (Jayce)
- Sources observed at a cadence of about 3-6 weeks + dedicated campaigns
- Observations at 4 frequencies, 35.1 MHz, 49.8 MHz, 64.5 MHz and 79.2 MHz each with 19.6 MHz bandwidth

LWA1 Detected Pulsars

LWA Pulsar Monitoring and Reduction

Automated Data reduction incorporating standard pulsar software and LWA Software Library ٠ (Dowell et. al. 2012) tools.

More than 11000 hours of reduced and archived data available publicly (~170 TB), spanning ~10 ٠ years for some sources.

Index of /PulsarArchive

Name	Last modified	<u>Size</u>	Description
Parent Directory		-	
B0031-07/	2023-02-08 11:02	-	
B0053+47/	2023-02-12 19:23	-	
B0105+65/	2023-03-28 22:56	-	
B0136+57/	2023-01-05 05:02	-	
B0138+59/	2023-03-03 15:22	-	
B0149-16 /	2023-03-04 23:50	-	
<u>B0301+19/</u>	2023-01-03 16:20	-	
B0320+39/	2023-04-07 02:39	-	
<u>B0329+54/</u>	2023-04-19 11:19	-	

F Iwa-project / pulsar (Public)		Iwa-project / pulsar_archive_pipeline (Public)			
<> Code (·) Issues	Pull requests 1 (•) Actions I Pr	ojects 🕕 Security 🖂 Insights	<> Code ① Issues 1	11 Pull requests 🕞 Actions 🗄 P	rojects 🛈 Security 🗠 Insights
t ^y main - t ^y 3 branches ⊗0 tags			🐉 main 🗸 🐉 1 branch 💿 0 tags		
			jaycedowell Added a link to the pulsar extension.		
	jaycedowell Merge pull request #14 from lwa-project/drop_py2			atabase database	minor changes for better managem
	-			tzpar	minor changes for better managem
	.github/workflows	Move the weird CI stuff out of requirements.		.gitignore	Updated the .gitignore file.
	tests	Keep do_exit for now.		LICENSE	Create LICENSE
	🗋 .gitignore	Converted data.py to a stub that download t		README.md	Added a link to the pulsar extension
		Added a copy of the GPLv2 license to the Pu		add_pulsar_to_db.py	script for adding information to the
	T Makefile	Merge branch 'master' into c++		Check_and_upload_results.py	added bw limit
				check_drx2drxi_result.py	Cleanup.
	L README.md	Rebadge and rename.		check_writepsrfits_result.py	Cleanup.
	SoftwareStack.md	DSPSR also uses Python 3.8.		Common.py	Updated for CFP11.
	🗋 data.py	Missed one.		C crab plot.pv	histogram plotting fix. scipy to num
	m				

https://github.com/lwa-project/pulsar

https://github.com/lwaproject/pulsar archive pipeline

minor changes for better management

script for adding information to the database for pulsar pr

33ced3

https://lda10g.alliance.unm.edu/PulsarArchive/

All profiles at 64.5 MHz

Average Pulse Profiles

Flux density distribution and spectra

Non-Stationary Interstellar Medium

• Integrated column density of free electrons between the observer and the pulsar.

$$\mathcal{DM} \equiv \int_0^d n_e \, dl$$
$$\Delta t = \frac{\mathrm{DM}}{2.41 \times 10^{-4}} \left(\frac{1}{\mathrm{v}_{\mathrm{low}}^2} - \frac{1}{\mathrm{v}_{\mathrm{high}}^2} \right)$$

- Stronger effect at low frequencies
- Can be affected by
 - $\circ~$ Proper motion of the pulsar through the ISM
 - Structures in the ISM: see Bansal et. al 2019
 - External factors such as solar winds
 - o Variations from lonosphere

About 25 LWA pulsars have solar elongation angles below 10 deg

- Need better pulsar, MSP/well behaved
- Better sampling

Pulsars for probing Galactic B-field

• Polarized : Faraday Rotation

$$\langle B_{\parallel} \rangle = \frac{\int_0^d n_e B_{\parallel} dl}{\int_0^d n_e dl} = 1.232 \ \mu G \left(\frac{\text{RM}}{\text{rad m}^{-2}}\right) \left(\frac{\text{DM}}{\text{pc cm}^{-3}}\right)^{-1}$$

Credits: Wikipedia

- Rotation of the Position Angle (PA) gives the RM
- We can measure DM independently, to get the average magnetic field strength

lonosphere changes rapidly, need better sampling

- RM variations over time in about 20 pulsars
- Currently limited by our ability to do lonospheric correction
- Gives an upper limit of ~0.1 rad/m⁻² on RM variations
- Based on DM fluctuations the limit on B-field variations is ~ 10 nG on ~10 AU scales (assuming pulsar velocity of 100km/s)

RM variations

Summary

- LWA pulsar program continuously monitors 108 target, at a cadence of 3-6 weeks and additional dedicated campaigns
- We are using this data to build the low frequency pulsar catalog below 100 MHz and to measure the basic pulsar properties/parameters like pulse profile, DM, period at the lowest frequencies.
- Since propagation effects like dispersion and scattering are frequency dependent, we are using the long-term data to investigate the impact of ISM on these observations, study the behavior of ISM and search for extreme propagation effects.
- Using the long-term profiles, we also search for any abnormal change/evolution in pulsar emission.