The Upgraded OVRO-LWA

LWA Users Meeting 2023 June 2, 2023 Ruby Byrne (on behalf of the OVRO-LWA team)

SIMONS

Galtech

WILF FAMILY FOUNDATIONS

WT M

O Gordon Wiltsie

What is the OVRO-LWA?

- Owens Valley Radio Observatory (OVRO) Long Wavelength Array
- Located near Big Pine, California
- Fully cross-correlated and all-sky field of view
- 352 antennas spaced over ~2.5 km
- 12-85 MHz (3072 channels)
- Currently in its "Stage III" upgrade
- Goal is to adapt the LWA antenna to all-sky imaging at several arcminute resolution

The OVRO-LWA Stage III Team

Caltech / OVRO / JPL Gregg Hallinan (PI) James Lamb David Woody Mark Hodges Morgan Catha-Garrett Andres Rizo Corey Posner Casey Law **Rick Hobbs** Larry D'Addario Jack Hickish **Yuping Huang** Kathryn Plant **Ruby Byrne** Ivey Davis Jun Shi David Hodge Vinand Prayag Marin Anderson (PS)

Andrew Romero-Wolf (co-PI) Nivedita Mahesh Greg Hellbourg Xander Hall Charlie Harnach Nikita Kosogorov Emily Kuhn

<u>University of New Mexico</u> Greg Taylor Jayce Dowell

<u>New Jersey Institute of Technology (NJIT)</u> Dale Gary (co-PI) Bin Chen Sherry Chhabra (NRL) Gelu Nita Brian O'Donnell Surajit Mondal Arizona State University

Judd Bowman (co-Pl) Danny Jacobs Katherine Elder Matthew Kolopanis Akshatha Vydula

<u>National University of Ireland, Galway (NUIG)</u> Aaron Golden Dúalta Ó Fionnagáin

<u>Rice University</u> Andrea Isella (co-PI) Jason Ling Ramon Wrzosek Deekshit Vedula

The OVRO-LWA: Stage I

- 2013-2014
- 251 antennas
- 5 outriggers
- LEDA correlator (Kocz et al. 2015)

Source: Gregg Hallinan, Marin Anderson and Morgan Catha

The OVRO-LWA: Stage II

- 2015-2020
- 283 antennas
- Addition of 32 fiber-fed outrigger antennas
- Longest baseline extended to 1.5 km
- Custom fiber-link board

Source: Gregg Hallinan, Marin Anderson and Morgan Catha

The OVRO-LWA: Stage III

Funded by NSF Major Research Infrastructure (MRI): \$2.4 million

- 2021-present
- 352 antennas
- Longest baseline extended to 2.4 km
- Complete overhaul of the analog and digital backend
- New data analysis backend and pipeline (Cal-Im) with 5PB of storage

Source: Marin Anderson and Morgan Catha

OVRO-LWA Stage III Antenna Installation

- 69 additional fiber-fed outrigger antennas
- 16 km of additional trenching
- New junction boxes
- Newly designed fiber link boards

Stage III PSF Performance

Source: Yuping Huang

Stage III PSF Performance

Source: Yuping Huang

Signal Backend

• All data processing is on-site

Source: Gregg Hallinan

Cables, cables, cables cable vault digital backend calibration and imaging analog signal processing storage

Source: Gregg Hallinan

Analog Receiver

 Custom redesigned analog receiver boards developed by Larry D'Addario

Source: Gregg Hallinar3

Analog Receiver

Source: Larry D'Addario

- 120 dB signal path isolation
- Improved performance at low frequencies
- Greatly reduced common mode noise, intermod products
- Reduced reflections

Digitization and Channelization

• Custom ADCs (Larry D'Addario, Jack Hickish)

Digitization and Channelization

Custom ADC boards Enabling 64x 10-bit ADCs (ADS5296A)

Developed by Larry D'Addario

SNAP2 Kintex Ultrascale 115 900000 z z 40 Gb Ethernet output 64 analog RF inputs (4+4 bit; channelized @ 24kHz) (coax) 1GbE Cosmic Ray Triggers / data control

Credit: Jack Hickish

All-singing, All-dancing Digital Back-end

GPU: 16 x NVIDIA GeForce RTX 2080 Ti

All-singing, All-dancing Digital Back-end

Simultaneous...

Cal/Im Cluster

- New computing cluster and storage system dedicated to OVRO-LWA data
- 528 cores
- 5.6 TB of RAM
- 5 PB of storage

Source: Gregg Hallinan

- 1. All-sky imaging
- 2. Extrasolar space weather
- 3. Exoplanets
- 4. Solar dynamic imaging
- 5. Gravitation wave/FRB event follow-up
- 6. Cosmic Rays
- 7. Cosmic Dawn

1. All-sky imaging

- 2. Extrasolar space weather
- 3. Exoplanets
- 4. Solar dynamic imaging
- 5. Gravitation wave/FRB event follow-up
- 6. Cosmic Rays
- 7. Cosmic Dawn

All-Sky Imaging with m-Mode Analysis

- m-mode analysis with Tihkonov regularization (Eastwood et al. 2018, 2019; technique based on Shaw et al. 2014, 2015)
- Stage III
 - 1000-hour integrations with upgraded array
 - Incorporating physical beam models
 - Fully polarized

m-mode mapping result from the OVRO-LWA Stage II Source: Eastwood et al. 2018

- 1. All-sky imaging
- 2. Extrasolar space weather
- 3. Exoplanets
- 4. Solar dynamic imaging
- 5. Gravitation wave/FRB event follow-up
- 6. Cosmic Rays
- 7. Cosmic Dawn

Monitoring Extrasolar Space Weather with Flarescope (Ivey Davis)

- Small optical telescope at Palomar Observatory
- Coordinated with single beam from OVRO-LWA
- Automated observing
 - Dedicated to small sample of nearby, sun-like stars
 - Looking for white-light component of flares from coronal mass ejections (CMEs) and solar energetic particle events (SEPs)
- 0.5m aperture
 - 13' x 13' FOV
 - 0.7″/px
 - ~1s kinetic cycle time
- mmag precision
 - \circ 5 min integration time
 - Objects brighter than 10th mag in g' band

- 1. All-sky imaging
- 2. Extrasolar space weather
- 3. Exoplanets
- 4. Solar dynamic imaging
- 5. Gravitation wave/FRB event follow-up
- 6. Cosmic Rays
- 7. Cosmic Dawn

Detection of Explanet Auroral Emission

Type II/III radio bursts

Auroral radio emission

Source: Chuck Carter & Caltech/KISS

- Search for time-variable Stokes V emission
- Leveraging all-sky mmode analysis imaging pipeline

- 1. All-sky imaging
- 2. Extrasolar space weather
- 3. Exoplanets
- 4. Solar dynamic imaging
- 5. Gravitation wave/FRB event follow-up
- 6. Cosmic Rays
- 7. Cosmic Dawn

Solar Monitoring

results from the OVRO-LWA Stage II Source: Chhabra et al. 2021

- Continuous daytime monitoring of the Sun
- Three timescales:
 - Dedicated solar beam 1 ms
 - Selected baselines 100 ms
 - Full cross-correlation 10s

- 1. All-sky imaging
- 2. Extrasolar space weather
- 3. Exoplanets
- 4. Solar dynamic imaging
- 5. Gravitation wave/FRB event follow-up
- 6. Cosmic Rays
- 7. Cosmic Dawn

Triggered Observing with the OVRO-LWA (Casey Law)

- Event
 - LIGO NS merger
 - CHIME FRB
 - DSA-110 FRB
- Response
 - 8x8 TB voltage (retroactive all-sky ms imaging)
 - low-latency power beam
 - high-energy all-sky buffer and repointing
- ovro-alert: Code for astronomical alerts at OVRO

(https://github.com/ovrocaltech/ovroalert)

- 1. All-sky imaging
- 2. Extrasolar space weather
- 3. Exoplanets
- 4. Solar dynamic imaging
- 5. Gravitation wave/FRB event follow-up
- 6. Cosmic Rays
- 7. Cosmic Dawn

Cosmic Ray Detection

- Radio-only detection of cosmic-rays demonstrated with Stage II
- Continuous monitoring with Stage III (Kathryn Plant)
- 8000 events per year will be detected with Stage 3 array in the energy range 10^{16.5} – 10¹⁸ eV
- X_{max} = 20g/cm² per event

results from the OVRO-LWA Stage II Source: Monroe et al. 2019

- 1. All-sky imaging
- 2. Extrasolar space weather
- 3. Exoplanets
- 4. Solar dynamic imaging
- 5. Gravitation wave/FRB event follow-up
- 6. Cosmic Rays
- 7. Cosmic Dawn

21 cm Constraints on the Cosmic Dawn

- Non-constraining limit on the 21 cm power spectrum from Stage II: $\Delta_{21} < 10^4$ mK at z ≈ 18.4
- New 21 cm pipeline with Stage III focused on systematics mitigation
 - Signal path isolation to mitigate cross-talk
 - Reduced signal reflection
 - Precision beam mapping and calibration
 - State of the art analysis pipeline

results from the OVRO-LWA Stage II Source: Eastwood et al. 2019

Where are we now?

- Currently wrapping up commissioning Stage III and bringing the last outrigger antennas online
- Success making high-fidelity images with just 10 seconds of data!
- Longer integrations and upgraded analyses are forthcoming

Conclusions

- Massive upgrade to the OVRO-LWA with Stage III
 - Now 352 antennas
 - Baselines up to 2.4 km
 - Improved signal processing backend
- Lots of science underway:
 - All-sky imaging
 - Extrasolar space weather
 - Exoplanets
 - Solar dynamic imaging
 - LIGO follow-up
 - Cosmic Rays
 - Cosmic Dawn

