Using Pulsars to Study the Solar Wind

Pratik Kumar(UNM) Stephen White(AFRL/UNM) Kevin Stovall(UNM) Jayce Dowell(UNM) Greg Taylor(UNM)

LWA Users Meeting 2021

Pulsars and Pulsar Timing

- Pulsars are rapidly rotating magnetized neutron stars
- One of the varied application include detection of Gravitational Waves from Supermassive black hole binaries

• NANOGrav

Credit: Joeri van Leeuwen

• To improve the detection limit: need to mitigate noise, such as noise due to the non-stationary behaviour of the intervening medium

The spectrum of gravitational wave astronomy

Non-Stationary Interstellar Medium

• Integrated column density of free electrons between the observer and the pulsar.

$$\mathcal{DM} \equiv \int_0^d n_e \, dl$$
$$\Delta t = \frac{\mathrm{DM}}{2.41 \times 10^{-4}} \left(\frac{1}{\mathrm{v}_{\mathrm{low}}^2} - \frac{1}{\mathrm{v}_{\mathrm{high}}^2} \right)$$

- Stronger effect at low frequencies
- Can be affected by
 - Proper motion of the pulsar through the ISM
 - Structures in the ISM: see Bansal et. al 2019
 - External factors such as solar winds
 - Variations from lonosphere

Credit: Eftekhari et al. 2016

Solar Wind Models (SWMs)

- One-phase model
 - Describes free electron density in the solar wind as purely spherical

$$n_e(R) = \frac{n_o}{R^2}$$
 $n_0 = 10$ (T1)
 $n_o = 4$ (T2)

4.0

- Two-phase model
 - o See You et. al. 2007
 - Separately describes the fast and slow wind phases of the solar wind

(FAST)
$$n_e(R) = 1.155 \times 10^{11} R^2 + 32.3 \times 10^{11} R^{4.39} + 3254 \times 10^{11} R^{16.25} m^{-3}$$

(SLOW)
$$n_e(R) = 2.99 \times 10^{14} R^{16} + 1.5 \times 10^{14} R^6 + 4.1 \times 10^{11} (R^2 + 5.74 R^{2.7}) m^{-3}$$

Solar Wind Models (SWMs)

Non-Stationary SWM

> • WSA-Enlil

WSA density profile for a few different cases of PSR B0950+08

Credit: S. White

Long Wavelength Array (LWA)

Frequency Range: 3-88 MHz First station ("LWA1") completed April 2011

Second NM station ("LWA-SV" completed July 2017

Next up: "LWA-NA" mini-station (64 dipoles) 2021 Construction

OVRO-LWA Imaging and Beamforming superstation

Observing Modes

- 256 dual-polarization antennas
- Distributed within a 100 x 110 m ellipse
- Two primary observing modes: Digital Beamforming and All-sky mode

LWA Pulsar Monitoring and Reduction

- Pulsar Observations Since 2013, Monitoring began in September 2015 (Stovall et. al. 2014)
- 108 Sources, including Pulsars, MSPs and RRATs
- Automated Robust observing with a Python based script
- Sources observed at a cadence of about 3 weeks
- Observations at 4 frequencies, 35.1 MHz, 49.8 MHz, 64.5 MHz and 79.2 MHz each with 19.6 MHz bandwidth

LWA1 Detected Pulsars

Credit: K. Stovall

LWA Pulsar Monitoring and Reduction

- Automated Data reduction incorporating standard pulsar software and LWA Software Library (Dowell et. al. 2012) tools.
- More than 4000 beam hours of reduced and archived data available publicly.

Index of /PulsarArchive

Name	Last modified	Size Description
Parent Directory		2
B0031-07/	2020-11-14 13:20	-
B0053+47/	2020-10-17 20:02	-
B0103+05/	2020-11-04 11:33	-
B0136+57/	2020-11-19 12:59	-
B0138+59/	2020-10-27 12:51	-
B0149-16/	2020-10-24 11:57	-
B0301+19/	2020-10-23 00:56	-
B0320+39/	2020-11-05 14:54	-
B0329+54/	2020-11-21 20:19	
B0355+54/	2020-10-31 18:45	-
B0402+61/	2020-11-08 14:52	
B0447-12/	2020-11-07 12:15	
B0450+55/	2020-11-09 23:06	-
B0450-18/	2020-11-11 17:53	
B0525+21/	2020-10-26 22:49	
B0531+21/	2020-04-21 02:03	-
B0628-28/	2020-11-08 21:00	-
B0055+64/	2020-11-18 02:38	-
B0650+14/	2020-11-02 00:42	-

P	master - Pfthranch Olitiq	0	otofie ± Cole +	About
😝 japondowell Updated the deperivatives to build the less data format			17.0.0 StN commits	Utilities for working with pulsar data from the LWA.
	tests	Fixing the traple test.	3 months ago	atomy strategy if
0	gligrare	Converted data py to a stud that download the latest vention from 0	R. 4 months age	putrue -
0	Tavis ym	Alow Pythord failures	7 mentre ago	[] Reative
0	LICENSE	Added a copy of the GPU/2 license to the Pulsar extension.	7 years ago	OPL23Lises Fille
ß	Makefie	Nope, but this night be () hope).	E-months ago	
0	REACIME Int	Marge branch 'master' into new lai-api	5-months ago	E-months ago Raleases
0	SofwareStack.nd	Updated the shape instructions to build the live data format	last month	No winama publicat
0	Osfa py	Made data py more robust.	1-months ego	
0	dedispersion a	Changed the various C functions that accept a pre-created numpy of	enay E monte apr	Packages
0	and ani py	Removed unneeded aphen imports.	4 months lago	No caokages published
0	R.:	Changed the various C functions that accept a pre-created numpy a	anay	
0	helperc	Final-ed porting parts and hulpers over to Python3. Fixed another I	ly	Contributors 2
0	kutosis.c	Converted writePortin2FromORSpec py over to using the LSL LOP	inter 2 years ago	jaycedowell
0	plotSinglePube py	Removed unneeded eptern imports.	4 months ago	🚱 kataval Kevis Stoval

https://lda10g.alliance.unm.edu/PulsarArchive/

https://github.com/lwa-project/pulsar

 $DMx [10^{-4} pc cm^{-3}]$

Solar Elongation (

0

Solar Elongation (°)

DMx [10⁻⁴ pc cm⁻³]

Trends with Solar Elongation

Figure shows the DMx vs Solar Elongation angle after subtraction of linear contribution.

IISM modelling

- Slow variations, dominant term at large angular separations
- Modeled by polynomial fitting of data > 60-degree angular separations
- Current analysis shows that a linear function is sufficient to model these effects

T2 SLOW FAST

WSA

T1 T2 SLOW FAST WSA

RMS values

Tolerance?

How does the RMS change with separation from the sun?

Summary

- Low frequency monitoring observations of pulsar can test the existing models of SW
 - In general, non-spherical models of SW have a lower precision than corresponding spherical approximation.
 - WSA works better than other common models of SW correction for PTA: need non-stationary SW models
 - Efficacy of models degraded below 15–20-degree angular separations: need better models or an avoid observing window
 - 15-degree cutoff: ~ 25-30 days or ~8% of total observing time
 - 20-degree cutoff: ~ 35-40 days or ~11% of total observing time
- Our current estimates show that DM RMS of the order of 10⁻⁵ pc cm⁻³ can be achieved using low frequency observations of pulsar: could improve the noise floor of high precision pulsar timing
- Next step: Test with simultaneous high frequency data

Delay at 1.4 GHz for WSA for >15-degree separation

Delay at 1.4 GHz [*µs*]