

Enabling LWA Science with Bifrost

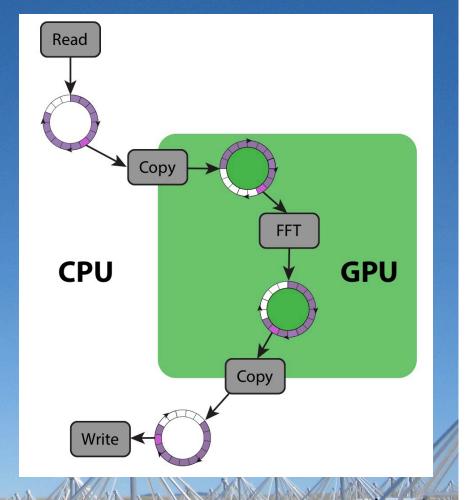
Jayce Dowell LWA Users Meeting August 16, 2021

What is **Bifrost**

C++/Python framework for building CPU and GPU-based pipelines

Used for building hybrid FPGA/GPU systems or stand-alone pipelines
GPU support through the CUDA API
Cranmer et al. (2017, JAI, 1750007)

What is **Bifrost**


https://github.com/ledatelescope/bifrost Or search for "leda telescope bifrost"

\rightarrow C $\textcircled{0}$	https://github.com/ledatelescope/bifros	t ••	• 🗵 🗘 🤇 Search		\ □ ◎ =	
Search or jump to	. 🕖 Pull requests is	sues Marketplace Explore		Ļ	+• 💽•	
🗜 ledatelescope / bi	frost		⊙ Unwatch 👻	15 ☆ Star 40 왕	S ⁹ Fork 19	
<> Code (!) Issues	30 🕅 Pull requests 4 🕞 Actio	ons 🖽 Projects 🖽 W	/iki 🙂 Security	🗠 Insights 🛛 🕸 Settings	i	
ੇ master → ੇ 28 ਬ	oranches 🛛 🔊 5 tags	Go to file Add fi	e▼ ⊻ Code -	About	礅	
jaycedowell Added a	• • • 1,249 commits	A stream processing framework for high-throughput applications.				
docs	Merge branch 'master' into o	Merge branch 'master' into docker-gpu-update 15 months ago				
python	Merge pull request #142 from	m realtimeradio/docker-gpu-up	10 months ago	astronomy gpu cu bifrost	uda	
src src	Cleaned up some compiler v	Cleaned up some compiler warnings in fir.cu. 14 months ago				
test	Added a backup URL for the	test data.	3 months ago	radio-astronomy high-throughput-computing		
testbench	Let's see if we can get the c	overage in the testbench test o	co 11 months ago			
tools	Traceback line numbering fix	ς.	22 days ago	🛱 Readme		
🗅 .gitignore	Add more suffixes to .gitigno	pre	4 years ago	述 BSD-3-Clause License		
🗅 .travis.yml	Pulled in the recent changes	to master.	11 months ago			

Bifrost Concepts

• Blocks

- "Atomic unit" of processing
- Independent thread
- Ring Buffers (Rings)
 - Emulates wrap-around in memory
 - Assigned to a specific "space"
- Pipelines
 - Combination of the above

Bifrost Design

- Python frontend wraps fast C++/CUDA backend
- Backend:
 - "Ring buffer" used for inter—block communication
 - Common type definitions and "BFarray" generic data structure
 - Several common modules implemented
 - FFT, matrix-matrix multiplication, FIR filters

Bifrost Design

- Python frontend wraps fast C++/CUDA backend
- Frontend:
 - Blocks and Pipelines are Python object abstractions for the backend
 - ctypes wraps all C calls
 - ndarray object for memory management (span of ring buffer)
 - Compatibility with many numpy functions, matplotlib, etc.

Bifrost Advantages

- Metadata describes the units of ring buffer dimensions; used in algorithms (e.g., dedispersion)
- Multi-sequence ring buffers, useful for different observations
 - The metadata will propagate down the pipeline

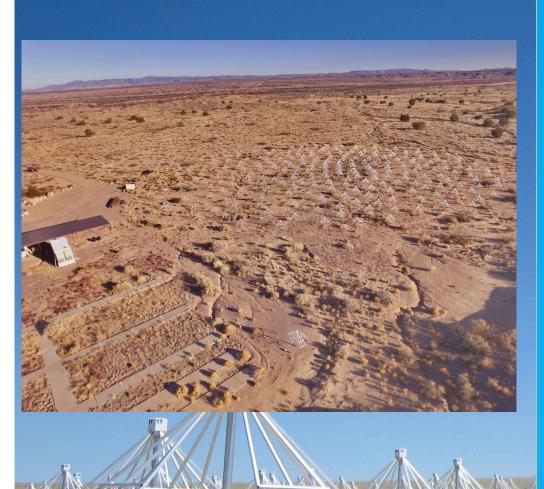
Bifrost Advantages

Time-tagged sequences in ring buffers

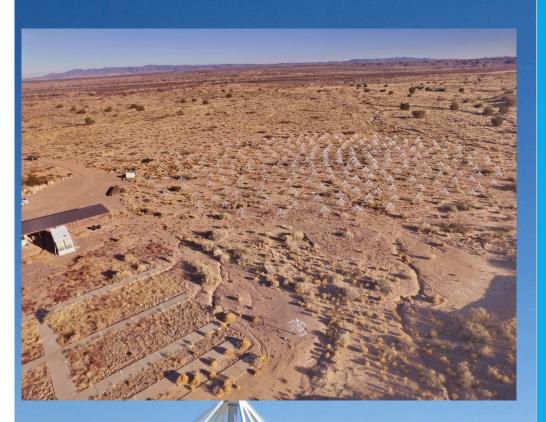
Can dump section of data to disk based on time range, observation name
Useful for detections of transient phenomena

Many astronomy and general processing blocks already built

Bifrost Advantages


• Built-in logging and performance benchmarking

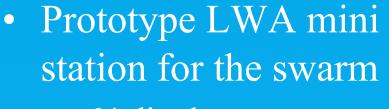
			(op1) lwasv-tp	– Konsole				\odot \otimes \otimes				
File Edi	t View Bookmarks	Setti	ngs He	elp									
like top	like_top.py - adp1 - load average: 4.96, 4.58, 4.58												
Processes: 525 total, 4 running													
CPU(s):	12.6%us, 1.2%sy,	, 0.0 ⁹	sni, 86	6.2%id, 0	.0°⊛wa, C).0%hi, 0	.0%si, 0	.0%st					
Mem:	65879288k total,	, 4702	22112k	used, 18	857176k f	ree, l	42040k bu	ffers					
Swap:	67010556k total,		ok	used, 67	010556k f	ree, 23	57676k ca	ched					
GPU(s):	22504448k total,	, 275	57632k	used, 19	746816k f	ree, 28.	5‰us, 198	/500W					
PID	Block	Core	%CPU	Total	Acquire	Process	Reserve	Cmd					
23490	PacketizeOp	6	3.9	9.998	1.054	8.945	0.000		/usr/l				
23788	udp_capture	1	100.0	0.100	0.000	0.100	0.000		/usr/l				
23688	udp_capture	8	99.4	0.020	0.000	0.020	0.000		/usr/l				
23490	udp_capture	O	99.0	0.020	0.000	0.020	0.000		/usr/l				
23788	TEngineOp	13	20.3	0.100	0.086	0.014	0.000		/usr/l				
23490	BeamformerOp	4	10.2	0.021	0.009	0.011	0.000		/usr/l				
23688	BeamformerOp	11	20.7	0.021	0.012	0.009	0.000		/usr/l				
23490	CorrelatorOp	з	1.0	0.021	0.013	0.008	0.000		/usr/l				
23788	PacketizeOp	13	20.3	0.091	0.086	0.006	0.000		/usr/l				
23490	СоруОр	2	20.6	0.021	0.016	0.005	0.000		/usr/l				
23688	СоруОр	9	20.6	0.020	0.016	0.004	0.000		/usr/l				
23490	RetransmitOp	5	16.0	0.000	0.000	0.000	0.000		/usr/l				
23688	RetransmitOp	12	18.8	0.000	0.000	0.000	0.000		/usr/l				
23688	udp_transmit	10	1.6	0.000	0.000	0.000	0.000		/usr/l				
23788	udp_transmit	13	20.3	0.000	0.000	0.000	0.000	python	/usr/l				
									^				
									~				
🔁 🖻 Iv	va_sv:bash 🖿 (op	1) lwasy	/-tp 📔	SessionSch	edules : ba	ash 📔 Sei	ssionSched	ules : bas	h 🚽				


How LWA is Using Bifrost

LWA-SV

- Four data products:
 - TBF 4+4-bit
 complex spectra, two
 tunings, up to a few
 seconds
 - TBN same as LWA1
 - DRX same as LWA1
 - COR correlator visibility output

LWA-SV


- Up to 19.6 MHz per tuning
 - TBF and wide band correlator running at 19.8 MHz
- Two Beams
 - Not fully independent; tunings are tied together
- Orville Wideband Imager
 Provides LWA-TV 2

OVRO-LWA

- 352 dipoles
- Next generation LWA hardware
- See Marin's talk

LWA-NA

- 64 dipoles
- Builds off OVRO-LWA hardware/software

Progress and Plans

- Current development focused on packet capture
 - New packet capture framework to make it easier to add new formats – both input and output
 - Support for InfiniBand Verbs
- Also want to add an interface for plugins and improve usability

Progress and Plans

- Work funded through NSF Cyberinfrastructure for Sustained Scientific Innovation grant
- Will support development as well as help for users wanting to get started with Bifrost
 - Initially focused on radio astronomy but interested in applications from other domains
 - Includes funding for a postdoc

For More Information

• Bifrost

- https://github.com/ledatelescope/bifrost
- https://ledatelescope.github.io/bifrost/
- https://github.com/ledatelescope/bifrost_tutorial
- https://arxiv.org/abs/1708.00720