Improvements to the Search for Cosmic Dawn Using LWA-SV August 16th, 2021

August 16th, 2021 Christopher DiLullo

Outline

- Introduction
- Achromatic Beamforming Implementation at LWA-SV
- Results from Spring 2021 Observing Campaign
- Future Work

21 cm Cosmology

Pritchard & Loeb (2012)

A Possible Detection! – Bowman et al. 2018

Image Credit: Experiment to Detect the Global EoR Signature (EDGES) Collaboration

LETTER

doi:10.1038/nature25792

An absorption profile centred at 78 megahertz in the sky-averaged spectrum

Judd D. Bowman¹, Alan E. E. Rogers², Raul A. Monsalve^{1,3,4}, Thomas J. Mozdzen¹ & Nivedita Mahesh¹

2020 LWA Users Meeting Results

- Simultaneous Observations of Science Field and Virgo A
- Calibration using Virgo A at transit
- 2 foreground models fit: Power Law and Smooth Polynomial
- ~10 K residual RMS after 2 minute integration
- Achromatic beamforming was beginning to be developed

An Idea for Improvement: Custom Beam Forming

• Sets the size/shape of the beam

• Make the beam achromatic

- $Y(\theta, \phi) = R(\theta, \phi) \times (W \cdot V(k))$
 - R antenna gain pattern
 - W weighting vector
 - V steering vector

 $R(\theta, \phi) \sum_{j=1}^{N} w_j \cdot e^{-2\pi i \nu r_j/c}$

DFT of weighting vector!

DiLullo, Taylor, & Dowell (2020) *Journal of Astronomical Instrumentation* Vol. 9 No. 2

Custom Beam Forming

Astronomical Instrumentation Vol. 9 No. 2

Achromatic Beamforming Implementation at LWA-SV

- BF coefficients normally come from MCS
- Modified DRX pipelines
 - Precompute BF coefficients for each frequency/pointing
 - "Trigger code" in Beam Step gains

LWA-SV Signal Path

Achromatic Basket Weaves

- Observe Cygnus A using "basket weave" pointings
- Probes different regions of the beam pattern in both RA and Dec directions
- Estimate station SEFD using:

$$SEFD = \frac{S_{\nu}}{\frac{P_{on}}{P_{off}} - 1},$$

 Table 1:
 Beam-Dipole Mode Basket Weave Results

Frequency	Standard Beamforming	Achromatic Beamforming
	SEFD: 4.0 kJy	SEFD: 4.8 kJy
$60 \mathrm{~MHz}$		
	FWHM: $3^{\circ}22'10.6''$	FWHM: $5^{\circ}06'09.3''$
	SEFD: 4.3 kJy	SEFD: 6.7 kJy
$75 \mathrm{MHz}$		
	FWHM: $2^{\circ}42'16.1''$	FWHM: $4^{\circ}44'22.7''$
NF		

DiLullo, Taylor, & Dowell (2021), JAI, in review

Spring 2021 Observing Campaign

DiLullo, Taylor, & Dowell (2021), JAI, in review

Observational Setup

- 2 beams with 19.6 MHz bandwidth per tuning.
 - Now have continuous coverage from 52 83 MHz.
- New observing strategy:
 - Stepped Beam observing mode.
 - New Science Field center pointing, same large cold region on the sky.
 - No longer simultaneously observe the SF and Virgo A.
- March 10th April 10th, 2021 using achromatic beamforming

<u>Method</u>

- Model waterfalls for calibration.
- Bootstrapping algorithm to generate "typical" spectrum.
- Bayesian framework to do MCMC foreground modelling.

Model Dynamic Spectra

- Simulate beam pattern at every nth pointing and mth frequency
- Convolve each D pattern with GSM at 7.5 s resolution for duration of pointing
- 2-D linear interpolation in time and frequency

Model Dynamic Spectrum

DiLullo, Taylor, & Dowell (2021), JAI, in review

Temp. [K]

82

Tuning 1 YY

3400 3600 3800

Temp. [K]

Tuning 2 YY

1800 1900 2000

Temp. [K]

5000

62

64

66

80

78

4500

Calibrated Dynamic Spectra

Calibrated Datasets

DiLullo, Taylor, & Dowell (2021), JAI, in review

Foreground Modelling: Bayesian Framework

- Bernardi et al 2016
- Likelihood of measuring some T for a single v

$$\mathcal{L}_{j}\left(T_{\mathrm{ant}}(\nu_{j})|\Theta\right) = \frac{1}{\sqrt{2\pi\sigma^{2}(\nu_{j})}} \mathrm{e}^{-\frac{\left[T_{\mathrm{ant}}(\nu_{j})-T_{m}(\nu_{j},\Theta)\right]^{2}}{2\sigma^{2}(\nu_{j})}} \text{ where } \sigma(\nu_{j}) = \frac{T_{\mathrm{ant}}(\nu_{j})}{\sqrt{\Delta\nu\Delta t}}$$

• Likelihood for the full spectrum

$$\ln \mathcal{L}\left(\mathbf{T}_{\mathrm{ant}} | \boldsymbol{\Theta}
ight) = \sum_{j=1}^{M} \ln \mathcal{L}_{j}\left(T_{\mathrm{ant}}(
u_{j}) | \boldsymbol{\Theta}
ight)$$

Model temperature spectrum

$$T_m(\nu_j) = T_f(\nu_j) + T_{\mathrm{HI}}(\nu_j).$$

• Uninformative prior, $\{p_n \in \mathbb{R}\}$

Foreground Modelling

- Log Polynomial used: $T_f(\nu_i) = \sum_{n=0}^{N} p_n \left[\log_{10} \left(\frac{\nu_i}{\nu_0} \right) \right]$
- Two modelling methods
 - MCMC fitting via emcee
 - Maximally Smooth Functions

•
$$\frac{d^m y}{dx^m} \ge 0 \text{ or } \frac{d^m y}{dx^m} \le 0, \quad (m \ge 2)$$

DiLullo, Taylor, & Dowell (2021), JAI, in review

Results

<u>MSF</u> XX: 3.29 K YY: 5.26 K

Average Observed Spectra and Residuals

Average Observed Spectra and Residuals

DiLullo, Taylor, & Dowell (2021), JAI, in review

Future Work

- Robust flagging algorithm for low-level RFI
 - Machine learning?
- Better understanding of the LWA dipole gain pattern
 - ECHO collaboration
- Alternative achromatic beamforming frameworks?
 - Detune beam via phase modulation?
- Explore other sky models for calibration
 - GSM 2016, SSM, GMOSS, LFSM?

Summary

- Current residual RMS limits are ~ 3 K, want ~ 50 mK
- Future efforts must focus on constraining uncertainties in the LWA beam pattern (dipole gain pattern, mutual coupling effects, etc) and calibration
- Work will be continued at NASA's Goddard Space Flight Center