

The LWA and Pulsar Timing Arrays

Timothy Dolch¹, A. Dulemba¹, F. Crawford, D. Fasce, D. Stinebring, H. Zhu, P. Demorest, T. Cohen, R. Lynch, North American Nanohertz Observatory for Gravitational Waves (NANOGrav) and International Pulsar Timing Array (IPTA) Collaborations + many others

¹Hillsdale College, Hillsdale, MI, USA

31-July 2020 LWA Users Meeting, Zoom, NM

The NANOGrav Physics Frontiers Center

We have grown to about 120 students and scientists at ~40 institutions:

NANOGrav = North American Nanohertz

Observatory for Gravitational Waves

The Green Bank Telescope and the Arecibo Observatory Our measurements are made every 3 weeks (with 7

best pulsars observed weekly), ~30min/pulsar on 78 millisecond pulsars, with the two most sensitive radio telescopes in the world:

Arecibo Observatory (AO), PR World's second largest single-dish radio telescope

- Green Bank Telescope (GBT), WV World's largest steerable single-dish radio telescope
- The Very Large Array is also contributing to our data sets, and MOU with CHIME telescope recently signed
- Moore Foundation has recently funded development of an Ultra-Wideband Receiver for the GBT

Both LIGO and PTAs probe a ΔL on the scale of their respective "nuclei"

Dolch (Hillsdale College, NANOGrav) - 2020 LWA Users Meeting

NANOGrav and the LWA: Mitigating Pulsar Scattering for GW Detection

Kolmogorov phase screen. $m_B^2 = 850$. frequencies: 150. to 1500.seed 15

- In future, wide-bandwidth receivers, we may need to account for frequencydependent dispersion measures (left)
- 6 NANOGrav pulsars currently detectable w/LWA (of 76, but 3 are in 13 most GW sensitive); more possible in future with cyclic spectroscopy
- as in Bansal et al. (2019) want to understand scattering timescale vs. frequency for all NANOGrav pulsars as widely as possible
- Resolved pulsar scattering screens can also model or limit unusual scattering events along line-of-sight; example J1713+0747

from Lam et al. (2018)

Current LWA Observing Program (LD014)

- Searching for four NANOGrav pulsars with the LWA that haven't yet been detected (below)
- Some hints of a detection in several, but still processing data
- If any one of them detected, will be in a position to monitor a future ISM event like the J1713+0747 event reported in Lam et al. (2018)
- Will also search for pulsations in an unidentified steep spectrum point source
- Thanks to Alex Dulemba (Hillsdale student), Froney Crawford (Franklin and Marshall), Don Fasce (F&M)

Pulsar Name / Candidate Coords	$\tau_{\rm scatt}^{\rm a} ({\rm ns})$	S1400 (mJy)
J1012+5307 (5hr)	2.5	3.2
J1640+2224 (5hr)	2.7	0.7
J1713 + 0747 (5hr)	7.1	8.5
J1909-3744~(5hr)	4.9	1.6
06:36:43 + 18:37:58.9 (1hr)	N/A	110 (74 MHz; not pulsed)

 Table 1. Target Pulsars and a Candidate Pulsar

^afrom Levin et al. (2016)

Figure 2. 74 MHz detection of an unassociated steep-spectrum point source VLA J0636+1838. Black upper limits are from higher VLA frequencies. Red upper limit is from the TGSS survey with the GMRT.

A Brief History of Cyclic Spectroscopy (CS)

- Antoni (2006) [Mechanical Engineering publication]
 - Theoretical foundations
- Demorest (2011)
 - Demonstrated successful deconvolution of ISM's pulse-broadening function on B1937+21 with Arecibo baseband data @430MHz
- Walker, Demorest, van Straten (2013) [WDvS13]
 - Expands Demorest (2011) analysis to derive "delay Doppler image"; e.g. CS version of secondary spectrum
- Archibald, Hessels, Stinebring (2014)
 - Used CS on LOFAR data to improve standard frequency resolution and resolve scintles in dynamic spectra
- Dolch, Lam, et al. (2014) 1713 Global
 - Used CycSpec backend developed by Glenn Jones in parallel with GUPPI backend; writes cyclic spectra rather than baseband as a data product
- Palliyaguru, Stinebring, McLaughlin, Demorest, Jones (2015)
 - Simulations show that ISM deconvolution via CS can lead to improved timing residuals
 Dolch (Hillsdale College, NANOGrav) - 2020 LWA Users Meeting

Inhomogenous ISM scatters and scintillates pulsar signals.

Archibald Hessels & Stinebring (2014)

Cyclic Spectroscopy...

- a signal processing technique useful for pulsed noise
- separates out the intrinsic pulsar signal from the effects of the interstellar medium (Walker, Demorest, Van Straten 2013; Palliyaguru 2015)
- E-field amplitude phase information required. Can be saved as cyclic spectrum to avoid bulky baseband data.

h(t) is best-fit IRF (impulse response function) from ISM

CS aims to deconvolve the ISM's IRF from original pulse profile

Demorest (2011)

H(v) amplitude of example ISM realization

H(v) phase of example ISM realization

What is a cyclic spectrum?

$$y(t) = h(t) \star x(t)$$

$$Y(\nu) = H(\nu)X(\nu)$$

real-time CS backend taking cyclic spectra under development at the GBT

h(t) is best-fit IRF (impulse response function) from ISM

CS aims to deconvolve the ISM's IRF from original pulse profile

 $S_y(\nu;\alpha) = H(\nu + \alpha/2)H^*(\nu - \alpha/2)S_x(\nu;\alpha)$

$$S_y(\nu; \alpha_n) = H_{ISM}(\nu + \frac{\alpha_n}{2}) H^*_{ISM}(\nu - \frac{\alpha_n}{2}) I(n) S_0$$

From Demorest et al. 2011

 $\alpha_n = n/P$, P = pulse period

How do we determine the transfer function phase (due to interfering E-field phases) from the CS?

- Best-fit transfer function H comes from Walker, Demorest, van Straten (WDvS) fitting algorithm (WDvS 2013)
- In order to deconvolve the ISM along every ray path, we need E-field phase information: contained in phase of transfer function H of the data we're fitting: $S_{\nu}(\nu; \alpha_n) = H_{ISM}(\nu + \frac{\alpha_n}{2})H_{ISM}^*(\nu - \frac{\alpha_n}{2})I(n)S_0$

$$\phi_{S}(\nu, \alpha_{k}) = \Phi(\nu + \alpha_{k}/2) - \Phi(\nu - \alpha_{k}/2) + \phi_{S_{0}}(\alpha_{k})$$
$$= \Phi(\nu + \alpha_{k}/2) - \Phi(\nu - \alpha_{k}/2) + \phi_{S_{0}}(\alpha_{k})$$
$$= \alpha_{k} \frac{\Phi(\nu + \alpha_{k}/2) - \Phi(\nu - \alpha_{k}/2)}{\alpha} + \phi_{S_{0}}(\alpha_{k})$$

Punchline: in cyclic spectrum $S(v,\alpha)$, the average slope of the phase gradient WRT α is the typical scattering time τ

$$= \alpha_k \frac{\Delta \Phi(H(\nu))}{\Delta \alpha_k} + \phi_{S_0}(\alpha_k)$$

$$\approx \alpha_k \frac{\Delta(\Phi(e^{2\pi i\nu\tau}))}{\Delta\alpha_k} + \phi_{S_0}(\alpha_k)$$

$$\approx 2\pi\tau\alpha_k + \phi_{S_0}(\alpha_k)$$

Dolch - Oberlin

WDvS algorithm on simulated data. Sps scattering

The ISM and Coherent Deconvolution with Cyclic Spectroscopy (CS) <u>https://github.com/gitj/pycyc</u>

- WDvS13 developed a fitting algorithm that separates out the intrinsic pulsar signal from the effects of the interstellar medium
- With some assumptions about the intrinsic (non-scattered) profile, the impulse response function can be iteratively solved for
- The EM phase information preserved in a cyclic spectrum is critical to this process
- Most of the iteration time in the fitting algorithm for a particular scattering configuration is spent on fitting the *phase* of the CS, not the *amplitude*

Dolch (Hillsdale College, NANOGrav) - 2020 LWA Users Meeting

Dolch et al. 2020 in prep.

Diagnostic for CS deconvolution ability as function of pulse profile S/N and scattering timescale

Diagnostic for CS deconvolution ability as function of pulse profile S/N and scattering timescale

Simulated Pulsars Improved with Cyclic Spectroscopy

Dolch et al. 2020 (in prep)

Dolch (Hillsdale College, NANOGrav) - 2020 LWA Users Meeting

Thanks to T. Cohen, NMTech

Scattering timescales of Simulated Pulsars

Intrinsic Pulse Sharpness of Simulated Pulsars

Dolch et al. 2020 (in prep)

Dolch (Hillsdale College, NANOGrav) - 2020 LWA Users Meeting

Galactic Distribution of Simulated Pulsars

Dolch et al. 2020 (in prep)

Dolch (Hillsdale College, NANOGrav) - 2020 LWA Users Meeting

Benefits of Cyclic Spectroscopy for (Low-frequency) Radio Astronomy

- Cyclic spectroscopy deconvolution ability (removing ISM effects by fitting for transfer function) may be enabled by higher scattering timescales than most current PTA pulsars
- Future possibility: ISM scattering removal may change some pulsars that are too scattered to be good timers – GBT Ultra-wideband receiver predicted results may be similar to possible LWA results with cyclic spectroscopy
- In other words, high scattering might help us. Especially in future telescopes: either low-frequency telescopes with seeing high scattering tails (LWA-Swarm, SKA-low) or higher-frequency, highly sensitive telescopes (ngVLA, SKA-mid)
- Can also provide extremely fine frequency resolution for a pulsed signal, for better RFI mitigation or scattering tail resolution (as in Archibald, Hessels, & Stinebring 2014 with LOFAR)
- Used in VLITE data for RFI mitigation with pulsed RFI as signal (Kerr, private communication)