
The LWA Software Library Update

Jayce Dowell LWA Users Meeting July 11, 2014

Recent Additions - LSL

- Current version is 1.0.1
- Added support for PyFFTW in the dedispersion and filterbank modules
- Switched the extensions over to the single precision FFTW library
- Added LSL-specific FFTW/PyFFTW wisdom
 - Wisdom available inside of LSL and within the Pulsar extension

Recent Additions - LSL

- Fast visibility simulations with the new Isl.sim._simFast extension
 - Runs baselines in parallel to obtain speedup
 - Supports:
 - Multiple frequencies
 - Point source models
 - Uniformly illumination disk models
 - Corrections for the primary beam
- New image overlay module

Recent Additions - LSL

- Cleanup of ATLAS/BLAS support
 - setup.py now uses the NumPy ATLAS discovering functions
 - Also allows for environment variables to be set that control the ATLAS path
- LSL Developer Primitives module
 - Provide an easier way to work with LWAI data files
- Various bug fixes

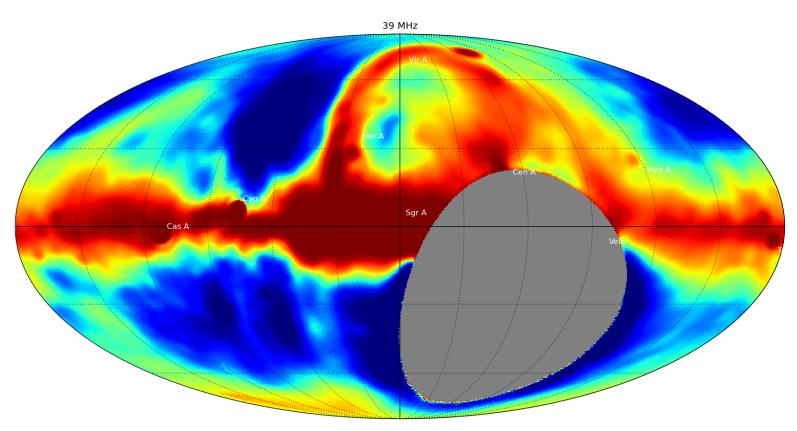
Recent Additions - Extensions

- Pulsar
 - 4-bit PSRFITS files
 - Switched over to single precision FFTW
 - Support for converting HDF5 files to PSRFITS
 - Support for combining multiple beams together

Recent Additions - Extensions

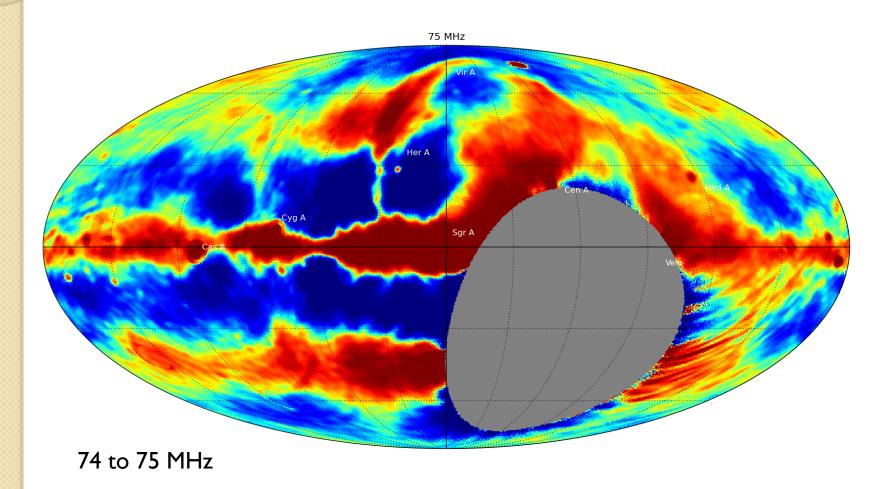
- Commissioning
 - Several visualization improvements to plotWaterfall.py and plotHDF.py
 - New tools for decimation in time/frequency of HDF5 data
 - New tools for incoherent dedispersion of HDF5 data
- SessionSchedules
 - Support for the new beam-dipole mode

Tutorials


- New tutorials available
 - Basic data reduction tutorials to provide information on setting up SDFs and basic analysis
 - <u>http://lda10g.alliance.unm.edu/tutorial/</u>
 - IPython Notebooks for basic scripting
 - <u>http://fornax.phys.unm.edu/lwa/trac/wiki/</u> WikiStart#LSLIPythonNotebookTutorials
 - Advanced processing tutorials
- Meet after lunch (~1:10 pm) for data reduction tutorial over at Physics & Astronomy

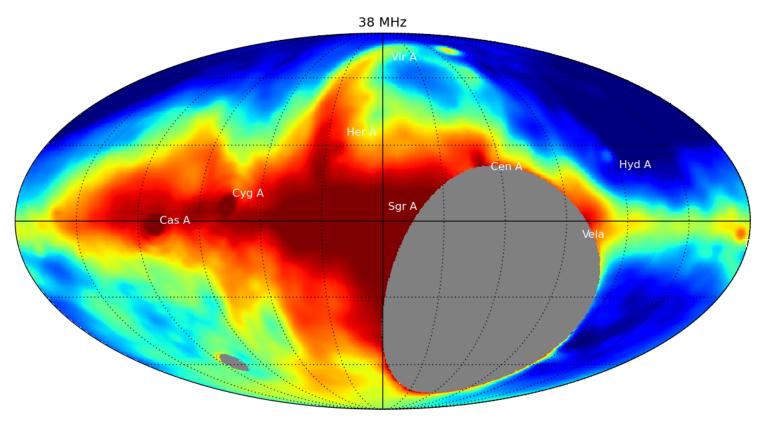
Future Development

- Improved bandpass models
- Array simulation package
 - Supports several default geometries
 - Beam shape/efficiency analysis
 - Optimization based on self-organizing neural networks (Keto 1997)
- New deconvolution module
 - Forward modeling/least squares approach
 - Currently in testing with the LWA1 Low Frequency All-Sky Survey

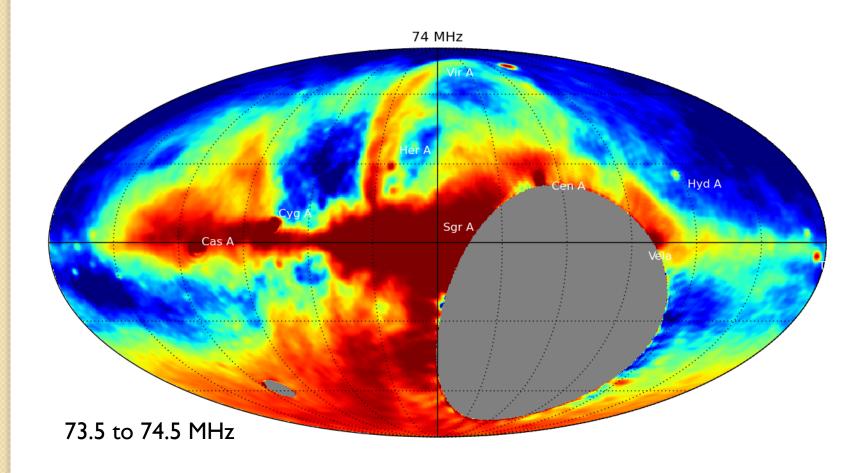

- TBW-based survey of the sky above -40° declination
- Various frequencies used:
 - 40 through 80 MHz in 10 MHz steps
 - Radio astronomy protected bands at 38 and 74 MHz
 - "Edge" maps at 35 and 85 MHz?
- All done with LSL
 - Correlation, calibration, imaging, deconvolution

• The need for deconvolution

38 to 39 MHz


• The need for deconvolution

- Deconvolution options
 - CLEAN
 - Classic or multi-scale
 - Maximum Entropy
 - Multi-Scale Multi-Frequency Synthesis
- Implementation Options
 - AIPS
 - CASA
 - Miriad


- Option (E) None of the above
 - LSL + forward modeling with least squares
 - Forward modeling:
 - Break sky into pixels and take each as a point source
 - Model the visibilities for point sources on every baseline
 - ~50,000 point sources on ~28,000 baselines
 - Least squares:
 - Image plane differencing to update fluxes for each point source

• Preliminary (50%) deconvolution

• Preliminary (50%) deconvolution

- Open questions:
 - How robust is the deconvolution method?
 - How can deconvolution be made faster?
 - What frequencies/declinations are confusion noise limited?
 - How do we do the flux calibration?
 - What, if anything, needs to be done about the zero spacing flux?