Fine Structure in Jovian Decametric Emission: LWA1 Observations

Chuck Higgins, Middle Tennessee State University Tracy Clarke, Naval Research Lab

Collaborators:

Kazumasa Imai, Kochi National College of Technology, Japan Francisco Reyes, U. of Florida Jim Thieman, NASA/GSFC Masafumi Imai, Kyoto University Jinhie Skarda, student, Stanford University

Acknowledgements: U. New Mexico, LWA Team, NRL TN Space Grant Consortium Dunham FAR Grant (computer + 12 TB drive MTSU – sabbatical award

Long Wavelength Array (LWA1), Socorro, NM

First Jupiter paper with LWA data is submitted

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. ???, XXXX, DOI:10.1029/,

Probing Jovian Decametric Emission with the Long Wavelength Array Station 1

T. E. Clarke¹, Chuck Higgins², Jinhie Skarda³, Kazumasa Imai⁴, Masafumi Imai⁵, Francisco Reyes⁶, Jim Thieman⁷, Ted Jaeger⁸, Henrique Schmitt¹ Nagini Paravastu Dalal⁹, Jayce Dowell¹⁰, S. W. Ellingson¹¹, Brian Hicks¹, Frank Schinzel¹⁰, G. B. Taylor¹⁰

Abstract. New observations of Jupiters decametric radio emissions have been made with the Long Wavelength Array Station 1 (LWA1) which is capable of making high quality observations as low as 11 MHz. Full Stokes parameters were determined for bandwidths of up to 16 MHz for six Io-related events at resolutions as fine as 0.25 ms. Preliminary LWA1 data show excellent spectral detail in Jovian DAM such as simultaneous LHC and RHC polarized Io-related arcs and source envelopes, modulation lane features, S-bursts structures, narrow band N-events, and interactions between S-bursts and N-events. Initial results show that the LHC component of the Io-C source region begins as early as CML III 235° at 11 MHz. Modulation lane structures appear continuous across LHC and RHC emissions, suggesting that both polarizations may originate from the same hemisphere of Jupiter. S-bursts have been definitively detected during an Io-D event and show drift rates consistent with those from other Io-related sources. Finally, S-N burst events are seen in high resolution and our data indicate that these bursts have cospatial origins in agreement with previous interpretations.

Data Reduction and Analysis

Jupiter Radio Emission Overview

bKOM – broadband kilometric emission (auroral origins)

HOM – hectometric emission (auroral)

Non-Io-DAM – auroral decametric (related to HOM)

Io-DAM – decametric emission tied to Io flux tube and Io torus

DAM Occurrence Probability Maps

Background 50 years of University of Florida Radio Observatory (UFRO) data

Initial LWA1 Observations Mar 2012 – Mar 2013

Io-A, Io-C Observations

LWA1 Instrument

- Excellent observing conditions
- Excellent Temporal & Spectral Resolution showing fine structures in Jovian decameter emissions

36.3

34.4

32.4

26.4

24.4

Erequency (MHz) 22.5 (MHz) 20.5 18.6

16.6

14.6

12.7

10.7

184.2

(ZHM) X0.5 28.5

- Remarkable Consistency of the Io-A/C Emission Structure
- RH and LH polarizations good test of the CMI theory
- Are RX and LO modes coming from the same hemisphere?

Io-A/C Modulation Lanes

- Modeled as interference through the lo plasma torus (Imai et al., 1992, 1997)
- Modulation Lanes continuity argues for RH and LH emission from the SAME hemisphere
- Contradicts CMI emission theory – RX mode growth rates are much higher than LO mode
- Other mechanisms
 - Mode conversion?
 - Local Refraction?

Positive slope modulation lanes from the Io-B burst of 27-Dec-2012. Resolution is 10 ms and 10 kHz.

Io-B Modulation Lane Slopes

Previous data 21-23 MHz observations from 1966 – 1979 (Riihimaa, 1978, 1993)

Modulation lane slope calculations are consistent with previous measurements

S-burst Drift Rates

- Io related emission
- High-Intensity millisecond bursts
- CMI emission: ~5 keV electrons accelerated from lo to Jupiter – Mirrored near Jupiter resulting in a loss cone of amplified Xmode waves
- Adiabatic theory predicts the maximum drift rates (~30 MHz/s)

S-burst Drift Rate vs Frequency

From Zarka et al., (1996)

We can use LWA1 data to test this theory. How do the drift rates correlate with the sources?

S-bursts for the Io-D event on 11-March-2012. Resolution is 0.25 ms and 10 kHz. Narrow-band emission as well as S-bursts are seen within the LHC Io-D emission. ¹²

Faraday Lanes

Plot of 27-Dec-2012 burst showing Faraday fringes in an X-Y spectrogram. The nearly horizontal Faraday fringe bands are seen across the entire Io-B and Io-D emission regions. The fringe separation decreases as the frequency decreases due to the λ^2 nature of Faraday rotation.

Education and Outreach

The Radio JOVE Project

JOVE Team

- NASA
- Raytheon
- University of Florida
- RF Associates
- The INSPIRE Project, Inc.
- Radio-Sky Publishing
- U. of Hawaii, Windward Community College
- Kochi National College of Technology

For More Information

http://radiojove.gsfc.nasa.gov/

Dr. Jim Thieman NASA-GSFC Codie 690.1 Greenbelt Maryland 20771 (301) 286-9790 thieman @nssdc.gsfc.nasa.gov

Dr. Chuck Higgins Dept. of Physics & Astronomy Middle Tennessee State University, P.O. Box 71

Murfreesboro, TN 37132 (615) 898-5946 higgins@physics.mtsu.edu

The Radio JOVE Project

Learning Science by Observing and Analyzing Radio Signals from Jupiter, the Sun and our Galaxy

Summary of LWA1/Jupiter Studies

- First LWA1 Jupiter paper is submitted
- LWA1 is an excellent instrument for Jupiter decameter studies
 - Excellent spectral and temporal resolution
 - Shows fine structures and polarization
- Possible to learn some new physics at Jupiter
 - Modulation Lanes observations can be used to check CMI theory
 - S-burst drift rates at high frequencies
 - Narrow band (N) event characteristics (S-burst/N-event interactions)
- LH and RH emission can be used for Faraday rotation studies

Recent LWA1 Observations Oct 2013 – Feb 2014

Juno Mission, ~2015-2017 Coordinated observations?

Recent LWA Coordinated Jupiter observing campaign with JAXA Hisaki (Exceed) mission, and HST, Gemini, Kitt Peak, Suzaku, Chandra, and XMM (thru Apr 2014)