

Collaboration

- Caltech, OVRO & JPL:
- Gregg Hallinan (PI), Stephen Bourke, Sandy Weinreb, Michael Eastwood,
 Marin Anderson, Ryan Monroe, Jackie Villadsen, Melodie Kao, Mike Clark (guest)
- David Woody, Dave Hawkins, Russ Keeney + OVRO staff
- Joe Lazio, Dayton Jones, Larry D' Addario, Jonathon Kocz, Chris Mattmann Melissa Soriano, Shakeh Khudikyan, Paul Ramirez
- LWA Collaboration: Greg Taylor, Joe Craig, Namir Kassim, Brian Hicks, Frank Schinzel et al.
- LEDA Collaboration: Lincoln Greenhill, Greg Taylor, Dan Werthimer, Steve Ellingson, , Danny Price Jonathon Kocz, Ben Barsdell, Frank Schinzel et al.

The Owens Valley LWA

Modified design to facilitate all-sky imaging

- Core array increased to ~230m diameter 251 antennas in core array + 5 outliers; 1000 m of fencing, 80,000 m of cables
- Antennas positions optimized to minimize sidelobes (-17 dB); minimum antenna spacing of 5m to minimize mutual coupling
- Modifications to ARX boards to minimize cost and delivery time
- Full cross correlation array, 60 MHz bandwidth instantaneous
- New custom built electronics shelter to accommodate increased computational load:
- Cosmic Dawn: Large Aperture to detect the Dark Ages (LEDA) [Harvard, Berkeley, UNM, VT] PI: Lincoln Greenhill
- Transient Science: All-sky Transient Monitor [Caltech & JPL] focus on extrasolar space weather PI: Gregg Hallinan

Electronics Shelter

Cable vault

Designed and built by Russ Keeney

Electronics Shelter

Connecting it all together...

Large Aperture Experiment to Detect the Dark Age (LEDA)

- FX correlator with 512 inputs (PIs: Lincoln Greenhill, Dan Werthimer, Greg Taylor, Steve Ellingson)
- The 512 signals digitized by 16 ADC boards, each containing thirty-two 200 Ms s⁻¹, 8-bit samplers processing a 0-100 MHz baseband.
- F-engine 16 CASPER Roach-II boards used as polyphase filterbank to give 2048 channels (4096 baseband)
- X-engine: 22 GPU-based X-engines will crosscorrelate contiguous 2.6 MHz sub-bands, each containing 109 channels.
- GPUs achieve exceptionally high computing density and power efficiency – 2 TF per GPU.

Successor to PASI

160 CPU cores, ~20 GPU, 1 TB of RAM

250 TB of high speed Lustre storage

Data will be processed and archived in real time

32768 x 4P x 2400 channels (60 MHz) x 32b+32b = 2.7 GB per integration

Resolution ~ 1 degree -> image data ~ 10 MB per integration (Stokes I and V)

Can monitor the entire hemisphere continuously to detect transients

Ongoing Work

Development of pipeline -> Calibration,
 deconvolution, polarization calibration –
 application of cuWARP (Stephen's talk)

Ionospheric calibration:

Data from ~1000 GPS stations will provide high spatial/temporal resolution tomography of the ionosphere above OVRO

Data will be gridded to the Mollweide projection and stored via the Healpix format

Accessible via web interface

LWA-OVRO Primary Science

LEDA: Detect sky averaged HI signal at z~20

First constraints on HI power spectrum at z~20?

All-sky Transient Monitor: Image the entire viewable hemisphere each second in Stokes I and V

Key objectives include first radio exoplanet detection, stellar CMEs

Implications of Activity – e.g. M Dwarfs

- 95% of stars that can host evolved exoplanets (age > 1 Gyr) are
 M dwarfs
- Kepler has shown that lower mass planets are frequent around
 M dwarfs (Dressing & Charbonneau 2013)
- Likely the nearest habitable planet orbits an M dwarf
- Can be much more active than the Sun and active for much longer -> flares up to 10⁴ times more energetic
- Flares higher X-ray and ultraviolet radiation flux –>
 photochemical reactions leading to significant atmospheric loss
 (Segura et al. 2010)
- Coronal mass ejections (CMEs) higher stellar wind flux –> can erode atmosphere eg. ion pick-up of a CO²-rich atmosphere (Lattimer et al. 2007)

Radio Emission from the Sun

Quiet Sun (MHz – GHz)

Free-free emission from thermal atmosphere (10⁴-10⁶ K)

Flaring Sun (MHz - GHz)

Intensely Bright Radio Emission

Gyrosynchrotron flares

Credit: Stephen White

Coherent bursts (Type II, Type III...)

Brightest Bursts from the Sun

Giant Type II burst detected in 1947 - Possibly as bright as 10¹¹ Jy at 60 MHz!

Payne-Scott et al. Nature, 160 (1947), 256, via Goss & McGee 2009

Radio Bursts from Nearby Stars

Bastian et al. Nature (1987)

Osten & Bastian, ApJ (2006)

- Active stars flare frequently and intensely
- Very bright bursts have been detected for decades ~ 1 Jy (eg. Lovell 1964)
- Powerful signature of CMEs on nearby stars

Radio Emission from Solar System Planets

- Late 1960s/70s: Earth's polar region also recognized as radio source (10¹⁴ erg s⁻¹).
- Voyagers: Opens up field
- All gas giants and Earth have strong planetary magnetic fields and auroral/polar cyclotron emission.

- Very high brightness temperature (> 10¹⁵ K)
- Highly circularly polarized
- Electron cyclotron maser emission
- Direct measurement of B...

$$B_{Gauss} = \nu_{MHz/2.8}$$

Why look for radio emission from exoplanets?

- It's a direct detection
- Allows measurement of rotation rate
- Possible use as a detection method for exoplanets
- The only method currently viable for measurement of magnetic field strengths for exoplanets...
- a) Leads to constraints on scaling laws based on magnetic fields of solar system planets
- b) Provides insight into internal structure of planet.

Expected Flux...

- Strong correlation between Solar Wind (P & V) and auroral radio emissions.
- The emitted power scales with the received stellar wind power $P_{rad} \propto P_{SW}^{x}$
- •The received stellar wind power depends on the distance and the cross-section of the magnetosphere $P_{SW} \propto R_M^2 d^{-2}$
- Close in planets have brighter radio emission
- Higher flux during CMES
- Jupiter at 1 AU from solar star at 10pc detectable with ~5,000 dipoles from the ground

Zarka et al, ApSS. 2001

Searches Thus Far...

- Searches have been ongoing for > 30 years no detections
- Involve targeted pointings of small sample of Hot Jupiters (<10)
- See Lazio et al. 2009 for review 2010 Decadal Survey White Paper
- Need to observe large sample at low frequencies (< 100 MHz) to overcome geometrical selection effects

Gallagher & D'Angelo 1981

- RMS thermal noise per 11 sec frame (2.6 MHz BW is ~750 mJy)
- 15 mins and 30 MHz BW -> 25 mJy

LWA 32 Antenna Expansion

- Antennas powered by solar panels with data transport via optical fiber
- Completion by ~Sept 2014
- Better localization of transients
- A higher resolution all-sky catalog
- Solar dynamic imaging spectroscopy observations
- Longer baselines for calibration
- Resolution of ~7 arcmins at the top of the band
- 41,000 baselines
- Each image will be ~10 Mpix

Fiber links (Sandy Weinreb)

Figure 1 - RF input to RF output S parameters of the laser diode to photo diode optical link shown in the photo above. This is with 3 dB optical attenuation. The link gain is -1dB +/- 0.5 dB from 20 MHz to 400 MHz and is 1 +/- 2dB from 10 MHz of 2000 MHz. The link input 1 dB gain compression power is -10dBm and link NF is 13 dB. Details for construction and tests follow in this report.

The Cosmic Dawn Array

- Funded 2013-2015 for a technology development at Caltech (Hallinan+) and JPL (Lazio+) for a much larger (2000 dipole) full cross-correlation array (>10⁶ baselines)
- Work underway includes
 - 1) migration to data transport via optical fiber
 - 2) Trade study of correlator architectures (ASIC vs FPGA vs Hybrid)
 - 3) solar-powered antennas and data processing nodes (digitization at the antenna)
 - 4) extended RFI surveys at and near OVRO
 - 5) data processing and archiving capabilities
- Will serve as a survey instrument for a multi-station LWA
- Key science:
 1) Power spectrum measurement of red-shifted HI at z~20 (Visbal et al 2012; McQuinn & O' Leary 2012)
 2) Detection of Jovian planets orbiting at 1 AU out to 10 pc