An Experimental Permanently-Installed Broadband VHF-Low Feed System for the VLA

Steve Ellingson (VT) July 11, 2014

Contributions from: M. Harun (VT) D. Mertley, S. Coffey, G. Doss, H. Intema, F. Owen, S. Sturgis (NRAO) R. Subrahmanyan (RRI)

VLA 4-Band Background

- Pre-EVLA system:
 - Erickson dipole feeds
 - ~7% sensitivity loss at L-band, so only intermittently installed
 - Sagging introduces variability in L-band
 - 1.6 MHz BW @ 74 MHz front end
- New receivers have increased BW: 55-82 MHz
- Objectives for new feeds:
 - [*constraint*] Insignificant blocking to higher freqs; can be permanently installed
 - [goal] Best possible sensitivity at 74 MHz
 - [goal] Best possible use of new front end bandwidth

M. Harun (VT) Ph.D. Work (2011)

SEFD (log₁₀Jy)

- Developed EM modeling techniques suitable for 4- & P- band system analysis
- Studied "strut straddling" scheme to mitigate blockage
 - Showed that sensitivity could be competitive with Erickson scheme
 - Showed that L-band sensitivity reduction should be < 2.3%

Harun & Ellingson (2011), Radio Sci., 46, RS0M04

Harun Dissertation: http://scholar.lib.vt.edu/theses/ available/etd-11042011-103540/

Why It Works

Figure 2. Distribution of power density in the focal plane of a reflecting paraboloid (D = 25 m, f/D = 0.36) relative to the power density at the focus at 500 MHz.

Focal Plane Power Density @ 500 MHz

Figure 3. Distribution of power density in the focal plane of a reflecting paraboloid (D = 25 m, f/D = 0.36) relative to the power density at the focus at 50 MHz.

Focal Plane Power Density @ 50 MHz

Simple trick to get a half-wave dipole current distribution from an end-fed antenna. (Can also do this with a sleeve dipole, but those are <u>very</u> narrowband.)

Modified J-Pole (MJP)

Ellingson, Coffey & Mertley (2013), EVLA Memo 172

MJP Impedance Match to 50Ω & Loss (meas.)

Gain: MJP vs. Half-Wave Dipole (meas.)

"MJP-B" Feed System

Original (Prototype) Rigging

Pol Combiner: X = (A+C)-(B+D)Y = (A+C)+(B+D)

"Production" MJP-B Feed System

Status as July 2014

- Ruggedized MJP-B systems "permanently" installed on 4 dishes now, 6 soon
- Testing extremely difficult & limited for both technical & administrative reasons.
 - Current "best practice" depends on measuring visibility phase variance as a proxy for SEFD
- Measurements so far indicate:
 - Sensitivity roughly 75% of Erickson system overall (i.e., 74 MHz narrowband, 55-84 MHz continuum)
 - Sensitivity superior to Erickson system below 65 MHz
 - L-band sensitivity impact < 1.5% (compared to 7% for Erickson system)
 - Cross-pol in uncalibrated linears may be high (~40%?), compared to ~10% for Erickson system
 - Pattern: Extremely difficult to measure. Measurements & simulations suggest possible trouble.
 - Both systems have a roughly 2:1 polarization imbalance, presumably due to VLA feed support asymmetry
- Further testing/confirmation awaiting return to A-array
- No funding for further technical development, optimization, or build-out

VLA/MJP-B vs. LWA1&LOFAR

- Sensitivity (SEFD):
 - 1 MJP-equipped dish = 8% of LWA1, 45% of a LOFAR int'l station
 - 6 MJP-equipped dishes = 50% of LWA1, 2.7 LOFAR int'l stations
 - 27 MJP-equipped dishes = 2.2 LWA1's, 12.4 LOFAR int'l stations
- VLA: Many long & diverse baselines; LWA1: Not so much
- LWA1: Exquisitely fine time & freq. resolution; VLA: Not so much
- LWA1: Multiple large fields of view, very fast response; VLA: Nope
- VLA limited by EVLA electronics to minimum frequency of 54 MHz

A Few More Ideas

- Optimization of mounting geometry would be a good idea
 - "MJP-B" is merely the best-liked of 3 possibilities considered
- Polarization combining scheme is approximate; could be optimized
- Yagi-ization of MJPs to increase aperture efficiency
- 2nd ring of dipoles Harun's work shows O(50%) improvement possible

Backup Slides

Summary of Findings (As of Sep 30, 2013)

	Legacy "crossed dipoles"	Strut-straddling in same plane	"Shrunken box" in same plane	Strut-straddling closer to subreflector
	Erickson	MJP-A	MJP-B	MJP-C
L-band Blockage	7% [1]	"not noticeable" [2]	< 1.5% (+/-0.5%) [3]	< 1.5% (+/-0.5%) [4] 2.3% <i>(sim)</i> [6]
Sensitivity @ 74 MHz, relative to Erickson (Bigger is better)	1.00	0.25 - 0.33 [2] 0.22 (sim.)	0.50 – 1.00 [5] 0.75 in X, 0.50 in Y [9]	(meas. not yet done) 1.13 (sim) [6]
Same as above, scaled by available bandwidth	1.00	0.32 – 0.42 <i>(extrapol.)</i>	0.73 – 1.45 <i>(extrapol.)</i> 0.75 in X, 0.65 in Y [9]	0.40 in X, 0.35 in Y [9]
Bandwidth (Full width of visibility magnitude at ½ the 74 MHz value)	12 MHz (66-78 MHz)	20 MHz (55-75 MHz)	27 MHz (55-82 MHz)	
Uncalibrated cross-pol. @ 74 MHz	~10% [7]	~25% [7]	~45% [7]	
Pol. Imbalance [8] @ 74 MHz	1.5 2.5 <i>(sim)</i> [6]	2.8 2.5 (sim)	2.0 2.5 <i>(sim)</i>	2.5 (sim)

[1] Perley, EVLA Memo 123, 2008

[2] Subrahmanyan, "Re: Coaxial dipoles in square configuration", email dated Jan 31, 2013

[3] Intema, "Re: 4band week ahead", email dated Aug 5, 2013

[4] Ellingson, "Re: 4band week ahead", email dated Aug 5, 2013

[5] Ellingson's estimate from analysis of data from tests on June 6 and July 25, 2013 (see details)

[6] Harun & Ellingson 2011, Radio Sci., 46

[7] Direct measurement of raw "X" and "Y" as seen by receivers; i.e., no attempt to recover calibrated orthogonal polarizations

[8] Ratio of max(|XX|, |YY|) to min(|XX|, |YY|) close to apparent main lobe peak.

[9] Owen, "Relative Sensitivity of Erickson and MJP Dipole Feeds, EVLA Memo 174, Sep 2013.

Modified J-Pole Prototype Pattern (sim.)

Note directivity is never worse than 0.5 dB less that of a $\lambda/2$ dipole, and increases monotonically with frequency

R. Subrahmanyan's Experiments (-Jan 2013)

- Designed/Built (w/Mertley & Coffey):
 - 74 MHz-resonant sleeve (end-fed) dipoles
 - Analog polarization combining scheme to synthesize H & V pols for LBR
 - Installed on two dishes
- Observed "negligible blocking" to L- and S-bands
- Sensitivity relative to Erickson system inferred from variance of visibility phases; implied 74 MHz sensitivity down by a factor of 3-4
 - Harun's work suggests this factor should be ~1
 - In July 2013, we determined that these dipoles, mounted in the plane of the existing Erickson dipoles, are NOT in the plane specified by Harun.
- Another concern was that fractional bandwidth ~3.4% (for | Γ|<0.1) for sleeve dipoles is near theoretical *minimum* for any feed of this dimension; much less than Erickson dipoles

Picture: P. Harden

Prototype 4m sleeve dipole SN05 Reflection Coefficient 20130118 test using 6 ft phenolic tripods

