Fine Structure in Jovian Decametric Emission using LWA1

Chuck Higgins Middle Tennessee State University Tracy Clarke NRL Code 7210 Jinhie Skarda Undergraduate, Stanford University

Collaborators:

Kazumasa Imai, Kochi National College of Technology, Japan Francisco Reyes, University of Florida Jim Thieman, NASA/GSFC Masafumi Imai, Kyoto University, Japan

Jupiter Radio Emission Overview

bKOM – broadband kilometric emission (auroral origins)

HOM – hectometric emission (auroral)

Non-Io-DAM – auroral decametric (related to HOM)

Io-DAM – decametric emission tied to Io flux tube and Io torus

DAM Occurrence Probability Maps

	CML	lo Phase
lo-A	200-270 °	205-270 °
lo-B	105-185 °	80-110 °
lo-C	300- 20°	225-260 °
lo-D	90-200 °	95-130 °

Central Meridian Longitude, CML (°)

Data Reduction and Analysis

- 2 Beams: Jupiter & Offbeam
- 19.6 MHz bandwidth
- ~ 242 Hours (> 20 Terabytes) of observations
- Data analysis implemented python packages *numpy*, *matplotlib*, & *lsl*

Data Reduction and Analysis

Io-A, Io-C Emission

Voyager Observations (for comparison)

July 16, 1979

Io-B Event

LWA1 data show beautiful similarity to Voyager observations

Ionosphere-Induced Faraday Lanes

Io-A, Io-C Emission

- RH and LH polarizations observed simultaneously good test of the CMI theory
- Are RX and LO modes coming from the same hemisphere?

Io-A, Io-C Observations Remarkable Consistency in Emission Structure

lo-A, lo-C Observations

- Excellent Spectral & Temporal Resolution
- Remarkable Consistency of the Io-A/C Emission Structure
- Similar Propagation Geometry

CML (System III)

0.32

Io-A/C Modulation Lanes

- Modulation Lanes show continuity across RH and LH sources
- Argues for RH and LH emission from the SAME hemisphere
- Contradicts CMI theory RX mode growth rates are ~10³ higher than LO mode
- Mode conversion?

Io-B, Io-D Observations

S-burst Drift Rates

- Io related emission
- CMI emission ~5 keV electrons accelerated from Io to Jupiter
- Magnetically mirrored near Jupiter resulting in a loss cone of amplified Xmode waves
- Adiabatic theory predicts the maximum drift rates (~30 MHz/s)
- Good remote sensing tool for Jovian magnetosphere

S-burst Drift Rate vs Frequency

From Zarka et al., 1996

LWA1 data can verify this model

Possible Investigation: How do the drift rates of Io-A, B, C, and D vary?

Hawk's Nest Radio Observatory, PA

Summary of LWA1/Jupiter Studies

- LWA1 is an excellent instrument for Jupiter decameter studies
 - Observations show excellent spectral and temporal resolution
 - Allows for the analysis of fine structures
- Modulation Lanes observations can be used to check CMI theory

 Are the RX and LO modes coming from the same hemisphere?
- S-burst drift rates at high frequencies
 - CMI amplified waves after electron acceleration by Alfvèn waves in lo's wake
 Test the adiabatic model along the Io Flux Tube (max frequency)
- Narrow band (N) event characteristics (S-burst/N-event interactions)
- LH and RH emission can be used for Faraday rotation studies

Upcoming Observations

- 100 beam hours, Oct 2013 Feb 2014
- Targeting many Io-B, Io-D observations
- Focus on emission fine structures

Juno Mission, ~2015-2017 Coordinated observations?