

Enabled by confluence of discovery & innovation

- HI cosmology
 - dark ages \rightarrow transition \rightarrow widespread reionization
 - predicted signatures on the sky (spectral, angular)
- CASPER: commodity FPGA-driven DSP
- GPU computing as engine for DSP
- cuWARP: wide-field polarized dipole-array calibration & imaging libraries (GPU enabled)
 - sub-set developed by Harvard group for MVVA
- LWA

THEORY IS UNCONSTRAINED

Swiss cheese universe

H/He

heating, ionization, pumping among levels

HI SIGNAL GOES THROUGH SEVERAL PHASES DURING THE DARK AGE AND EMERGENCE.

Top: Evolution of temperature over redshift. Bottom: Deviation of spin temp which regulates 21cm line Mddle: ioniZation fraction.

M-wave inVestigations move left to right. Today: green / yellow w/ single dishes green: arrays Tomorrow – or next week : blue/red.

A Range of Possible Spectra

LEDA Summary

- LEDA targets Cosmic Dawn HI science from the ground
 - constrain thermal history of IGM at $z\sim 20$
 - constrain initial conditions for Reionization
- measure or constrain the sky-averaged spectrum
- supplement radiometry calibration using array-based deliverables

- dipole gain patterns
- ionospheric fluctuations
- sky models
- redundant measurement

LEDA Summary

- add full-correlation back-end to an LWA station
 512 inputs, 60 MHz, 2400 ch., 240 Gb s⁻¹ (internal)
- add outrigger antennas for radiometry
- apply a generalized GPU-native ME package for cal/im
- set the stage for trivial scaling to $O(10^3-10^4)$ elements
- set a foundation for power spectrum measurements at redshifts ~ 20

LEDA32 First Light

One Year Later: LEDA512

LOL Specifications LEDA at OVRO LWA (as built)

fringe spacing		λ 3.4m - 10m
Minimum	4.8m	
CORE (N=251)	212m	55' - 2.7°
CORE-outriggers (N=5)	373m	31' - 1.5°
FULL	504m	23 ' - 1.1°
Stokes-I confusion (min.)		
CORE	0.9 - 1.9 Jy	
CORE-outriggers	0.3 - 0.6 Jy	
Collecting area	~5000 m ² (62 MHz; zenith)	
Filled aperture Ø (instant.)	155m	
Outrigger-outrigger spacing	166m	
Mutual coupling (gain deviation)	O(a few %) TBC	
Correlated inputs	512	
Correlated bandwidth	59 MHz	
Computation	16.9 Top s ⁻¹ (~½ eVLA @ 8 GHz BW)	
Greenhill – LWA Users Meeting – 13Aug29		

Evolution

- Sky-average HI spectrum
 - winter 2013/14 science season
 - constraints or detection
 - continuation into 2014/15
- Angular power spectrum
 - LEDA platform for development (h/w & technique)
 - array expansion by increments (?)
 - LEDA2048 scale is practical to build today.

Summary

- LEDA is targeting ground-based Cosmic Dawn HI science
 - constrain thermal history of IGM at $z\sim 20$
 - constrain initial conditions for Reionization
- LEDA provides a general purpose back-end for LWA stations
 - correlation
 - beam forming
- A 512 input O(100 MHz) FPGA/GPU correlator is
 - Demonstrated
 - Easy
 - Embarrassingly scalable to O(5000) antennas (current GPUs)
 - Affordable
 - Compact
 - Energy efficient
 - 'LEDA2048' correlation would draw < 20 kW in Q4CY14 (GM110 GPUs)
 - Fast to build
 - A platform for DSP experimentation in a general purpose programming environment

RF Environment

LEDA Technical Innovation

- design optimizations for LWA-OV
- heterogeneous FPGA/CPU/GPU correlator (1st light 9/12)
 - simplified corner turn, unidirectional data flow
 - application of general purpose HPC hardware
 - embarrassingly simple & fast correlator scaling
 - low full cost (parts, systems, FTEs)
- high-density sampler card (16 x 250 MSa s⁻¹ @ 8 bit)
- optimization of Harvard-X for Kepler GKI10
- PSRDADA applied to 40-gE data capture (GPUs)
- RF shielded rack configuration for HPC hardware
- foundation for future LWA beamforming back-ends

LEDA512 Correlator Footprint

- Compute: 17 TOp s⁻¹ 240 Gb s⁻¹
- Rack: I
- Power: 9.0 kW
 - 1.6 kW FPGA/network
 - 7.4 kW GPU servers (170W/GPU)
- Manpower: 13±1 person-month
 - dev. to deploy: LEDA32 to LEDA512
 - 512 build/integration: 6 weeks
 - 512 deployment: < 5 days</p>
- Pile of Parts: \$200-250K
 - GKI 10 Tesla GPU, e5-2670 CPUs
 - ROACH2/Virtex6, 40-gE

Know your gain pattern...

'Real' LWA Gain Patterns

