Searching for Single Dispersed Pulses with LWA1 DRX Beams

Steve Ellingson Virginia Tech

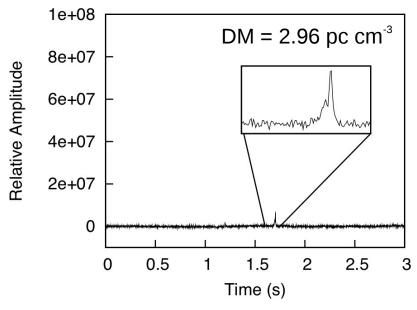
LWA1 Users Meeting – Albuquerque, NM July 26, 2012

Things That Make m- λ Single Dispersed Pulses (SDPs)

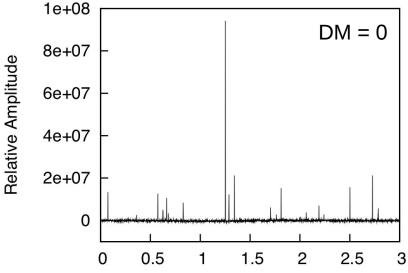
- Known: Pulsars
 - Crab giant pulses (CGPs) (Popov et al. 2006; Bhat et al. 2007; LOFAR)
 - Anomalously-intense pulses (AIPs) (Ulyanov et al. 2006; LOFAR)
 - RRATs (McLaughlin 2006)

Suspected:

- Giant flares from magnetars (Gaensler et al. 2005; Taylor & Granot 2006)
- Expiration of primordial black holes (PBHs), (Rees 1977; Blandford 1977)
- Prompt emission from GRBs (Paesold & Benz 1998)
- Prompt emission from supernovae (Colgate 1975)
- Mergers of exotic compact objects (Hansen & Lyutikov 2001)
- Cusping superconducting cosmic strings (Vachaspati 2008)
- Things not suspected: Motivation for "source agnostic" search


SDP Projects Underway at LWA1

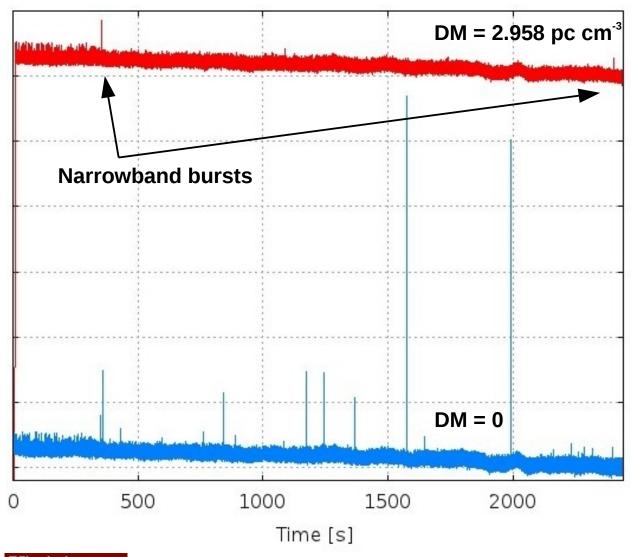
- CFP1 CGP campaign (160 hrs, 24% done)
 - Almost all of data taken so far is pre-April 2012 and thus diminished value for CGPs due to pointing error)
- CFP1 SDP campaign (80 hrs, 60% done)
 - Also a lot of mis-pointed data, but less important here...
- CFP1 GCN-Triggered GRB campaign (80 hrs, < 1% done)
 - Awaiting necessary modifications to MCS
- LIU's Cat-2 observing program
- CFP2 Proposals
- N.B.: Data from many DRX-mode projects can be mined for SDPs

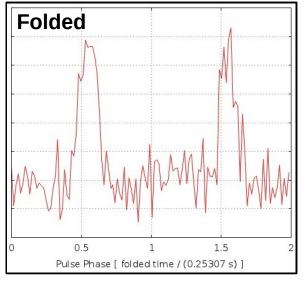


An AIP Detection Reported by LOFAR

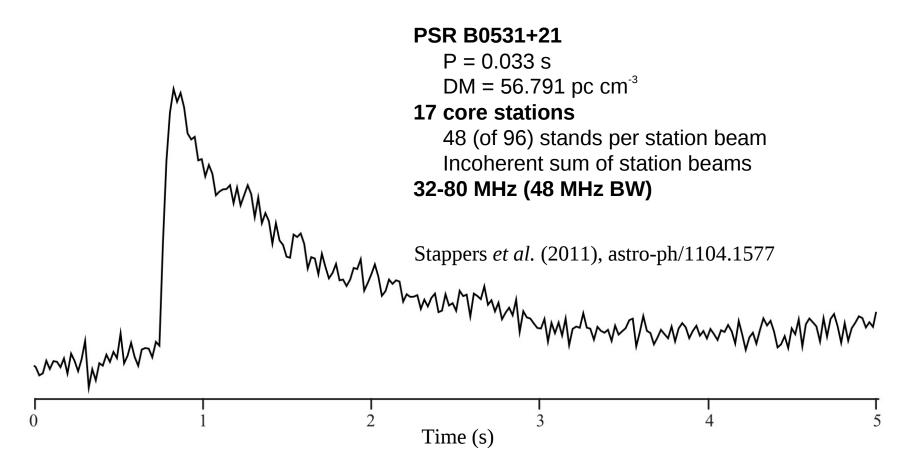
P = 0.253 sDM = 2.96 pc cm⁻³

Time (s)


(One of 6 pulsars currently known to produce meter-wavelength AIPs)

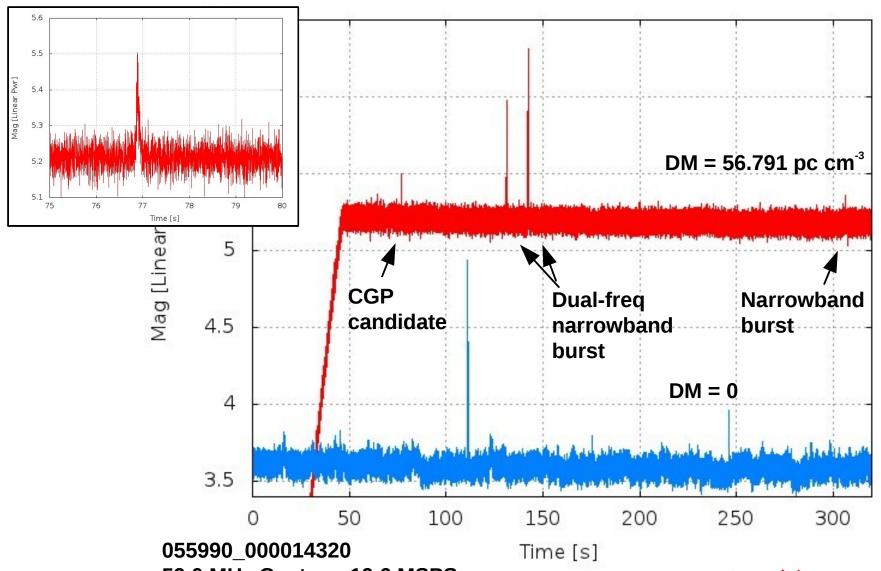

Stappers *et al.* (2011), astro-ph/1104.1577

No B0950+08 AIPs Seen at LWA1 (Yet)



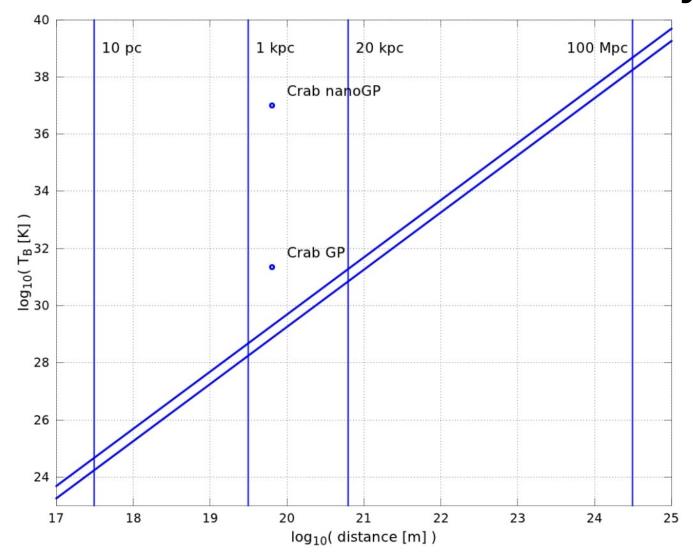
PSR B0950+08 120225_0500_B1_NS 39.4 MHz Center x 19.6 MSPS Pointing Error in Effect No RFI Mitigation

A Crab GP Detection Reported by LOFAR

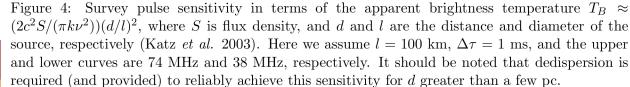


LWA1 should have roughly equal sensitivity in this case (LWA Memo 185)

Searching for CGPs in LWA1 Data



59.0 MHz Center x 19.6 MSPS
Pointing Error in Effect
No RFI Mitigation



LWA1 SDP Sensitivity

GPs detectable throughout the galaxy (Assuming DM is "reasonable")

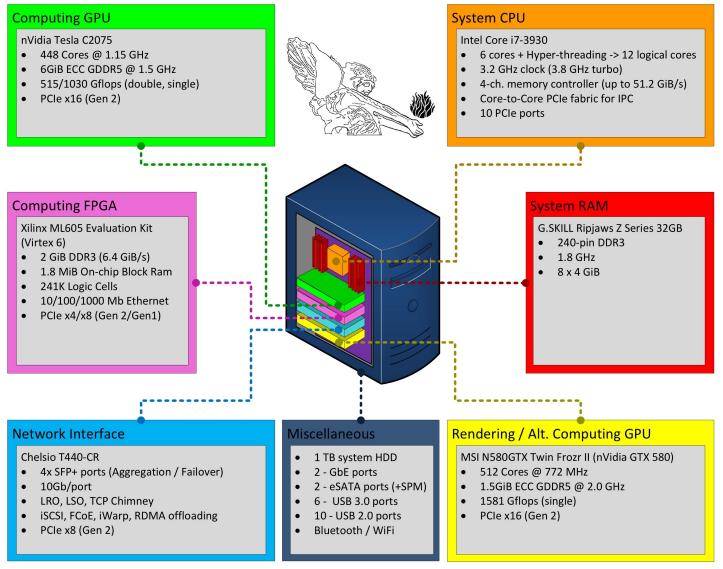
NanoGPs detectable to ~10 Mpc

Objectives of SDP Campaigns

- Detections (of course)
- With or without detections, set usefully-tight limits
- Rate (events pc⁻³ yr⁻¹) as a function of
 - Wavelength
 - Pulse width
 - Energy (Jy s)
- Rate-volume limits that can plausibly be achieved by LWA1 are sufficient to impacts fundamental theory in some cases

Interpreting SDP Detections

- Dispersion measure gives a rough idea of distance to source
- Spectrum indicates Lorentz factor in fireball scenarios
- Scatter broadening likely obscures source pulse width, so:
 - hard to bound emission volume, so
 - hard to estimate brightness temperature
- Check for associations in GW, optical, γ-ray, etc.
 - Positive associations suggest possible progenitors
- Pulse profile contains information about ISM


SDP Work Plan

- Confirm instrument & procedures are in order by reliably detecting:
 - Periodic emission from "easy" pulsars (Thanks Paul & Kevin!)
 - AIPs (Not there yet...)
 - CGPs (Not there yet...)
- Use above test cases to tune automated SDP processing (Loa)
- Port Loa to HPC clusters:
 - ATHENA (http://www.arc.vt.edu/resources/hpc/athena.php)
 - PROMETHEUS (purpose-built cluster, see next slide)
- Going forward:
 - Process mammoth backlog of data (liberate storage)
 - Implement UNM-VT NLR data path for future observations
 - Implement Loa pipeline in shelter (quasi-commensal observing)
- ALTES Campaign (deep survey; see later slide)

PROMETHEUS

Heterogenous HPC cluster

Each node (shown left) has:

- Core i7-3930
 - **+ 32GB RAM**
- Vertex-6 FPGA
- GPU

Total 4 nodes ~8 Tflop/s

100% point-point interconnects
Over 10GbE

Now undergoing integration, commissioning, software development

ALTES

- 520 beam-hour "source-agnostic" survey
- Thorough search of DM from [1,10] to [350,800] pc cm⁻³
- Time resolution limited only by scatter broadening by the ISM
- Two 64 MHz beams ~4 Jy (τ =1s, 5 σ), 4-30 deg FOV
 - "Track" beam (cold out-of-plane, Galactic center/inner plane, galactic plane close to zenith), preferably with pulsar
 - "Patrol" Beam on 30 minute repeating schedule:
 - 20 min fixed @ zenith
 - 5 min on bright pulsar
 - 4 min all-sky continuum pulse survey, from Z=0 to Z=65 deg
 - Beam pointing diagnostic (map)
 - All-sky full-freq coverage, albeit at low duty cycle
 - 1 min at NCP
- RFI anticoincidence using omni horizon beam (vertical collinear array)
- Data analysis requires ~5 million CPU-hours

