

LWA-1 Science Overview

Namir Kassim LWA Project Scientist Naval Research Laboratory

&

Tracy Clarke
LWA System Scientist
Naval Research Laboratory

Key LWA Science Drivers

- Acceleration of Relativistic Particles in:
 - Hundreds of SNRs in normal galaxies at energies up to 10¹⁵ eV.
 - Thousands of radio galaxies & clusters at energies up to 10¹⁹ eV
 - Sesson equivalence of the series of the seri
- Cosmic Evolution & The High Redshift Universe
 - Evolution of Dark Matter & Energy by differentiating relaxed & merging clusters
 - Greenhill,

 Study of the 1st black holes & the search for HI during the EOR & beyond

 Hartman
- Plasma Astrophysics & Space Science
 - Ionospheric waves & turbulence Helmboldt, Rickard
 - Acceleration, turbulence, & propagation in the ISM of Milky Way & normal galaxies.
 - Solar, Planetary, & Space Weather Science
 White, Jaeger
- Transient Universe-----
 - Possible new classes of sources (coherent transients like GCRT J1745-3009)
 - Magnetar Giant Flares
 - Extra-solar planets
 - Prompt emission from GRBs

& Pulsars

Ellingson, Hartman, Hallinan, Hankins

Top level LWA science drivers well represented at this meeting & in early science commissioning activities

LWA-1 Science: Transients

- Earlier HF/VHF (dipole) efforts GASE, ETA, LWDA, LOFAR, MWA, etc.
 - Many emphasize all-sky observing and real-time de-dispersion capability

Focused on search for prompt, coherent radio emission from GRBs

- An advantage/complement of LWA-1 beam-forming is angular resolution & sensitivity – suggested programs include
 - Target known candidates at multiple frequencies
 - Multiple beams at different v to provide wide bandwidth
 - Targets inc. GRBs, Crab Pulsar, Galactic Center, nearby flare stars, known exo-planetary systems
 - Serendipity-driven target numerous fields
 - Survey entire sky by pointing multiple-v beams at a different field each day, or
 - Form fan-beam by stacking multiple single-v beams along meridian
 - Latter emphasizes sky coverage over bandwidth

New opportunities include simultaneous observations with EVLA Low Band Advantage over earlier VLA & GMRT: inflate Ω^* t through long dwell times

Transient Science Commissioning

- Proposal LE001: A GCN-triggered Search for GRB Prompt Emission (Ellingson)
 - Science: Theoretic predictions include bright (> 100 Jy), coherent emission processes
 - Comm: MCS triggering, RFI mitigation, pulse detection & incoherent de-dispersion software
- Proposal LE002: Crab Giant Pulses (CGPs **Ellingson**)
 - Science: Low frequency monitoring, underlying mechanism
 - Comm: RFI mitigation, pulse characteristics, on-line CGPs detection techniques/analysis software
- Proposal LS001: Single Dispersed Pulses (Simonetti, **Ellingson**)
 - Science: Exotica, including explosions of primordial black holes (PBHs)
 - Commissioning: RFI mitigation, pulse characteristics
- Proposal LT001: Observing the Transient Universe with the 1st LWA Station (Taylor, **Hartman**)
 - Science: All-sky transient monitoring
 - Comm: Building all-sky imager backend, software correlation, RFI excision
- Proposal LH-002: Searching for Hot Jupiters with the LWA1 (**Hallinan**)
 - Science: Detection of magnetized, extrasolar planets
 - Commissioning: Search algorithms for bursty & circularly pol. emission
- Proposal LB001: LWA Cosmic Ray Air Shower Trigger (**Besson**)
 - Science: Source of UHE Cosmic Rays AGNs?
 - Commissioning: External triggering capabilities (on analog signals),
 providing analog coincidence unit
 LWA Users Meeting

THE ASTRONOMICAL
JOURNAL

VOLUME IN 2010 December - No. 1860 NOMBERS 6

LWA-1 Science: ISM Studies using RRLs

Erickson et al. 1985

Sensitivity Calculation

- 1 line, 1 polarization: 10 hours
 - Frequency independent
 - ∞ [filling factor]⁻²

Single LWA Station

- Can do several lines at once, 2 pol
- Detect in ~ [5,25] hrs @ [≤40,74] MHz
- Higher frequency work takes more time
 - Need access to lowest LWA v range
- Need Δv =0.1 KHz (1-2 km/s @25 MHz)

LWA-1 will push beyond Parkes - a Galactic plane survey (student thesis?) is very feasible.

LWA-1 Science: Feasibility of Detecting Pulsars

- Target bright, low DM pulsars
- Source list developed from
 - Flux density based on measured or extrapolated spectrum
 - NE2001 scattering model used to estimate pulse broadening
 - Combined with known PSR periods to pick sources that will not be scatter broadened away
 - Simulated LWA-1 Pulsar Observations – Jacoby et al. 2007 (LWA Memo 104)

Over 60 PSRs detectable with LWA-1!

- Measured ≤ 102 MHz detected
- Extrap. from 400 MHz detected
- Measured ≤ 102 MHz not detected
- Extrap. from 400 MHz not detected

RRL, Pulsar, & other Galactic Science Commissioning

- Proposal LP001: Carbon Recom Lines in the Cygnus Arm (Pihlstrom, Lane)
 - Science: Physical processes in the cold, low density ISM (Peters et al. 2010 A&A, Dark Ages contaminant
 - Commissioning: Spectral line capability test, RFI mitigation
- Proposal LR001: Low Frequency Studies of Pulsars (Ray, **Hankins**)
 - Science: Pulsar emission mechanism, geometry of emitting region
 - Commissioning: Array phasing capability, integrated spectra, pulse profiles
- Proposal LH001: Continuing Measurements of the Cas A/Cyg A flux ratio (Hartman)
 - Science: Cas A temporal variations follow-on to LWDA science (Helmboldt & Kassim 2009)
 - Commissioning: Amplitude calibration, beam pointing, zenith beam pointing check, off-zenith pointing, transient response test, beam shape measurements, sensitivity as a function of frequency
- Proposal LP002: Multi-frequency Large Scale Sky Survey (**Polisensky**)
 - Science: Galactic & extragalactic emission processes, subtraction of foreground emission for high-z HI work, HII absorption
 - Commissioning: Sky maps, spectral index maps LWA Users Meeting

LWA-1 Science: Solar System Studies

Solar

- Some solar bursts may have fast (~50 ms), narrow-band (<10 kHz) structure requiring more sensitivity than existing single-dipole monitoring systems (e.g. Big Blade, GBSS or BIRS)
 - See papers by G. Mann & G.P. Chernov
- LWA-1 will allow 16X higher temporal or spectral resolution at comparable S/N to ongoing single dipole monitoring programs

Jupiter

- Voyager saw wealth of fine temporal & spectral structure in decametric bursts that require sensitivity of LWA-1 to observe from Earth
 - ms time resolution will be useful

Solar bursts currently being studied with single antenna systems, including LWA dipoles

Both applications need broad frequency range

Solar System Science Commissioning

- Proposal LC001: Tracking the Dynamic Spectrum of Jupiter (Clarke, Jaeger)
 - Science: High temporal & spectral resolution studies of decametric emission, emission storms, S-burst structure, polarization conversion
 - Commissioning: Polarization, temporal & spatial variations
- Proposal LW001: Solar Radio Bursts at High Temporal and Spectral Resolution (White)
 - Science: Solar radio bursts characteristics
 - Commissioning: Dynamic spectra, polarization

Ionospheric Measurements: Interferometry (e.g. with LWA 2)

- A LW interferometer is extremely sensitive to ΔTEC
 - Current VLA has Δ TEC precision ≤ 10⁻³ TECU [1 TECU $\equiv \ln_e dl \sim 10^{17} \text{ m}^{-2}$]
- LWA's power is ability to measure ∆TEC towards many simultaneous directions
- Basic building blocks of those measurements are the phase measured between any two stations

As soon as LWA-2 is available, we can start exploring those kinds of

measurements

 How well do ionospheric phases & phenomena vary with frequency?

- Build up ionospheric weather almanac
- Helmboldt talk tomorrow

Ionospheric Science Commissioning (standalone with LWA-1)

- Proposal LR002: Ionospheric Absorption Measurements Using LWA-1 as an Imaging Riometer (**Rickard**)
 - Science: Ionospheric total electron content
 - Commissioning: Evaluate the use of LWA1 to extract riometry data
- Proposal LC002: Ionospheric Scintillation (Crane)
 - Science: Extract 2-D ionospheric spatial structure
 - Commissioning: Ionospheric behavior, aim to establish protocol for studying the ionosphere
- Proposal LC003: Passive Meteor Scatter using the Long Wavelength Array (Close)
 - Science: Meteor trail passive illumination from TV at VHF develop improved understanding of radar scattering mechanisms
 - Commissioning: Pulse event detection algorithms, estimate of ionospheric electron concentration perturbations due to meteor showers for improved LWA calibration

Science with LWA-1+: LWA 2 & 3 with the VLA

LWA-1 has 10X sensitivity of 1 VLA dish – LWA outlier stations can compliment VLA 74 MHz for improved angular resolution on bright objects

- VLA A configuration
 - Limited resolution (Kassim et al. 1993)

- VLA A+ PT
 - Resolution better, fidelity poor because of "lonely" outlier (Lazio et al. 2006)
- EVLA A + PT + LWA-2
 - Image fidelity improved with single outlier at Horse Springs

Significant impact even from only 1-2 outlier stations

Summary

- LWA-1 will do good science ranging from:
 - Potentially very exciting transients
 - More modest pulsar, ISM, & solar system studies we know we can do
 - Both extremes represent good science, serendipitous discoveries possible
 - Viable student thesis projects RRL, pulsar surveys
 - Invaluable commissioning experience including deep, efficient, multi-purpose integrations as path-finders towards future LWA experiments
- With LWA 2 & 3 aka LWA-1+
 - Standalone with LWA-1
 - Anti-coincidence RFI avoidance for concurrent transient observations
 - Demonstrate station-based interferometry
 - Determine source locations & flux densities
 - Explore ionospheric scaling laws & phenomenology test future calibration schemes
 - With EVLA Low Band
 - Monitor EVLA transient observations for lower frequency counterparts.
 - LWA-2 & 3 outliers for EVLA 74 MHz imaging next step beyond PT-link
 - Improved EVLA 74 MHz system a catalyst to early LWA science
- Useful because LWA stations are BIG.
 - 512 dipoles/station = 75% of Clark Lake array each 100-m station like GBT
 - Large Δv_{max} & broad tuning range key to most early (non-imaging) science

Consider placement of LWA-2 to compliment EVLA Low Band: Instant high profile "LWA-EVLA" science

- Over 10x usable bandwidth over legacy VLA 74
 MHz system can eventually leverage significant portion of LWA bandpass
 - Some issues, including RFI, but seems manageable
- Software efforts to handle new data underway (e.g. Bill Cotton, Huib Intema at NRAO-CV & others)

BACKUP

1st Science from LWDA

- LWDA is technical legacy of 1st ARI HF/VHF AO
 - 2nd ARI promised scientific results
 - Difficult challenge with NRL forging ahead alone after departure of ARL-UT, minimal UNM support
- 1st scientific paper: Evolution of Cassiopeia A at Low Radio Frequencies (Helmboldt & Kassim 2009, AJ, 138, 838)
 - Recipient of ARPAD postdoctoral award
 - NRL press release:
 http://www.nrl.navy.mil/pao/pressRelease.php?Y=2
 009&R=79-09r
 - Driven by work of 2 NRL postdocs
 - Helmboldt transitioned to Fed over last year
 - Hartman positioned for NMT role in LWA
- 2nd LWDA science paper ready for submission
- Realization of LWDA science reflects tenacity & scientific excellence of NRL ARI group

LWA-1 Science: Pulsars

- Detect single pulses via de-dispersion use to
 - Investigate physics of PSR emission mechanisms
 - Drifting pulses, profiles, inter-pulses
 - Derive pulse-averaged low frequency spectra over LWA range
 - Poorly known, especially in lowest LWA frequency range
- Giant pulses (GPs) & other spurious PSR emission
 - Crab GPs now observed at 23 MHz (Popov et al. 2006)
 - GP spectra do not appear to follow simple power law
 - LWA-1 will search for spurious emission from other nearby, bright PSRs
 - Crab-like GP "echoes" lasting days possible new probe of small-scale structure within inner synchrotron nebula (Crossley et al. 2006, astroph/0612109)

Crab Giant Pulses at 23 MHz: left panel – single pulse in two adjacent frequency channels; right panel – average of 10 strong pulses

LWA-1 Transient Science: Predicted Planetary Radio Emission

LWA-1 Transient Science: Known Galactic Examples

- Consider GCRT J1745-3009 (Hyman et al. 2005)
 - Bursts: ~ 1 Jy at 330 MHz, ~10 minutes duration
 - If coherent (S α λ⁶) up to 10⁴ boost at 74
 MHz
 - LWA-1 Detectability
 - 5 min, 8 MHz, 74 MHz: 1σ ~63 mJy
 - Situation 10X worse towards GC
 - T_{svs} $\sim 10^4$ K towards GC, A_e down by 2X
 - 1σ ~0.6 Jy; ≥ 5σ detection if α ≤ -1
- Consider recent eruption of SGR 1806-20
 - $-\sim 0.5$ Jy at 240 MHz
 - $-\alpha \sim -2.1 = 5$ Jy at 74 MHz lasts for many days
 - − 1 hr, 8 MHz, 74 MHz: $1\sigma\sim0.4$ Jy → >12 σ detection
- These known cases look very feasible
 - Especially considering leverage in Ω^*t space

LWA-1 could do exciting transient work!

LWA-1 Science: ISM Studies Using RRLs

Carbon & Hydrogen Radio Recombination Lines are unique diagnostics of the cold ISM at very low frequencies

- Carbon RRLs are of particular interest
 - Detected to very high Rydberg states (up to n~768)
 - Absorption lines below 150 MHz (in emission above that)
 - Atoms very sensitive to interstellar environment permit excellent measurements of ρ , T, & ionization levels (Payne et al. 1994).
 - Seen all along inner Galactic plane (Erickson et al. 1995)
- LWA-1 offers improvements over other instruments
 - Parkes 64 m: 100 m LWA-1 improves resolution
 - NRAO 300 ft (transit instrument): tracking ability of LWA-1 superior
 - Frequency range: LWA-1 could study the lines at multiple frequencies
 - <u>Essential</u> for understanding underlying physics
 - Wider v range than Parkes or UTR-2
- RFI will make detection very challenging
 - Lines no longer detectable at Parkes
 - LWA-1 detection: excellent demonstration of ability to do sensitive work in the SW-US

LWA-1 will improve over current capabilities.

Science with LWA-1+

- LWA-1 with LWA-2 & 3
 - Independent operation
 - Anti-coincidence RFI avoidance for transient observations
 - Incoherent addition of RRL observations
 - Interferometry
 - Phase & model fitting to constrain accurate source positions
 - 3 stations increase accuracy via closure phase, ability to measure fluxes
 - Explore deep, interferometric integrations
 - \sim 65 km baseline: confusion limit \sim few mJy *can we get close?*
 - Explore ionospheric scaling laws as tests of future calibration schemes
- LWA-1 with 74 MHz VLA
 - Monitor selected VLA observations simultaneously with LWA-1.
 - E.g., X-ray & radio triggered searches are planned for the GC
 - 74 MHz VLA observations of SWIFT triggered GRBs are planned
 - Monitor with LWA-1 at lower frequencies dispersion an advantage.
- LWA-1+ with 74 MHz VLA
 - Imaging with LWA-2 & 3 outliers as next step beyond PT link
- EVLA exploring possibility to improve 74 MHz capability
 - Improved feeds, increased bandwidth = > ≥10X sensitivity
 - WIDAR correlator might accommodate ≥ 5 LWA stations

LWA-1 Transient Science: Exo-Planet Magnetospheres

- Below 40 MHz, Jupiter, when bursting, is brightest object in solar system
- LWA might detect emission from extra-solar "Jupiters"
 - Independent verification of planetary systems using new technique.
 - Proof of magnetosphere magnetic shield of cosmic rays pre-requisite for life?
 - LWA-1 pathfinder observations long shot, but advantage over current VLA searches through longer integrations and at lower frequencies

