LWA-SV Memo 1

LWA-SV F-engine firmware overview

D. Price
22" February 2017

Introduction

The LWA-SV digital signal processing system is known as the Advanced Data Processor (ADP).

It consists of:

e 32x CASPER ADC16x250-8 digitizer cards (a total of 32x16=512 inputs).

e 16x CASPER ROACH2 FPGA processing boards (Xilinx Virtex-6 SX475T FPGA)
e Mellanox SX1024 10/40GbE switch

e 6x GPU servers (ASUS ESC4000 G3 server)

¢ Clock synthesizer (Valon 5008), PPS, 16-way splitters and lots of cables.

The digitization, channelization, and channel selection are done on the ROACH2 boards, the
firmware of which is written using the CASPER / MATLAB / Simulink / Xilinx ISE toolflow!.

This memo gives an overview of LWA-SV firmware, by providing a walkthrough of the
firmware’s Simulink diagram. It is intended that this document is read while clicking through the

Simulink diagram.

Firmware overview

The LWA-SV digital frontend digitizes, channelizes, selects a target band, and sends them it over
packetized 10 Gb Ethernet to the GPU servers. Identical firmware runs on all 16 ROACH?2 boards

! https://casper.berkeley.edu/wiki/Main_Page



in parallel, with each board digitizing 32 inputs (for a total of 512). Data output from each board
can be identified by setting an ID register, which appears in the packet headers.

Digitization

Digitization of the 32 inputs is conducted using dual ADC16-250-8 cards, which use the Hitite
HMCADI1511 ADC chip, running at clock speed 205 Msample/s at 8-bit.

Coarse Delay

After digitization, coarse delay of the input signals is conducted. The coarse delay allows integer
delay of ADC inputs, from values of 4-1024 cycles. The purpose of this delay is to account for
cable delays and ADC calibration, which can misalign boards by +/- 1 clock cycle.

Channelization

Channelization is performed via a 8192-point FFT, either with or without a polyphase filterbank
FIR frontend. The polyphase filterbank (PFB) is a 4-tap, 8192-branch, Hamming-windowed
frontend that can be bypassed if a raw FFT is desired.

Requantization to 4 bits

After channelization, data are requantized to 4 bits (4b real, 4b imag). Bit selection is done via
multiplication with a scaling coefficient (entered via a shared BRAM) slicing the bottom bits, then

rounding to 4 bits.

Packetization

Finally, channel selection and packetization is performed. Channel selection is done by setting a
‘start channel” and ‘stop channel’ register. Any channels within this range are written to a packet
buffer. The packetizer then generates packet headers, and reads the selected channels into each

packet’s data payload.

The size of packets is configured by setting several registers. A maximum of ~% of the band can be
handled by each 10 GbE port, i.e. about 1024 channels. The maximum number of channels in a
single packet is roughly 240, so the target band must be broken into several ‘subbands’. For ADP,

6 subbands are used, one for each compute node.



Packet structure

Packets are standard UDP packets with jumbo frames (up to 8192B); the precise size of packets
depends on firmware configuration. After the standard UDP headers, there is a 128-bit packet
header that describes the packet payload. We have coined this CHIPS: the common high-

throughput interferometer packet specification.

Packet header

The packet header is as follows, from MSB to LSB:

Name Data type Description
roach_id U8 ID of ROACH board. For LWA-SV, 1-16
ghbe_id Us ID of GbE output port. Either 0 or 1
n_chan_per_sub U8 Number of channels in the packet (subband) <240
n_subband Us Number of subbands total (configurable)

subband_id Us8 ID of this subband.

(spare) Us8 Currently unused

first_chan ulé6 ID of first channel in packet
sequence_id uU64 Unique ID given to each subband (i.e. FFT window)
Packet data payload

Each packet contains n_chan_per_sub channels, for all 32 inputs. Each channel is 4-bit real, 4-bit
imaginary. Axes are [channel, antpol, real imag], where antpol runs 0-31, and channel runs 0-
n_chan_per sub. Each channel totals 256 bits (32 antpol x (4 re + 4 imag)), so the total packet size
in bytes is:

(128 + 256 X n_chan_per_sub) /8

The user needs to make sure the packet size is <8192B, and also that <1024 channels total are

selected.



Model walkthrough

( MSSGE
ROACH?2 PCORE PCORE PCORE

System XSG core config fft_core pfb_core eq_core

Generator

adc fft pkt

The model consists of three top-level blocks:

e ADC - this contains the ADC16x250 digitizer yellow block, and reset / synchronization
pulse logic.

e FFT — this contains the polyphase filterbank implementation for each of 32 inputs, and the
post-channelization 4-bit requantization logic.

e PKT - this contains 10 GbE Ethernet packetization logic, including channel selection.



ADC top-level block

Reset logic

0 —p{sim_reg in_reg dZ*1 q . >| [a:b] l—béore_rstl

pipeline34

Latency = 1

rst

| [a:b] |—><cnt_rst|

Main reset register adc_rst provides a reset line for ‘cores’ (i.e. logic blocks), and counter values.
The adc_rst line should be set high (e.g. Ob11) and then low (0b00) to trigger a reset.

Pulse-per-second and sync pulse

4z1q piood  sim_out

Farm o
;

pipeline3s

This logic is used to derive a ‘synchronization pulse’, that is required to reset internal logic of
many CASPER blocks. Only one sync pulse will be generated and passed to the timing sync goto
block, and a counter reset is required to trigger a new pulse to be propagated on timing sync.

adc_sync_in is a GPIO connection that is connected to a pulse-per-second signal derived from
GPS. A global goto sync_pps is used in the packetizer to make sure values only change on a PPS,

not mid-second.

The sync_out GPIO propagates the sync pulse to the GPIO output (this is not used at LWA-SV).
The sync_count register stores a count of how many PPS have occurred since the last counter reset.

The sync_pulse register stores how many timing sync pulses have been sent.



Coarse delay

delay3 Slice6 pipeline4b
ldouble e 16 U 100 Latency = i 10.0
x_188 X ix
im_1 in, = s _10_
] o eSSz g <
delay4 Slice7 pipeline47

delay20 Slice26 pipeline70
it Latency = 1

Slice28 pipeline72
Latency = 1
UFix_10_0

delay24 Slice30 pipeline60
Latency = 1
UFix_10_0 Y = UFix_10_0

delay14 Slice18 Lp‘pelmem‘
n atency =
= _UF“LIS m o muax,mj m Slice21 line66
p-! ’ delay30 icex pipel
= — ’ Latency = 1
delay15 Slice12 pipeline58
Latency = 1

Tinput

pipelines7

delay31 Slice23 !

tinput y=1

Each input can be delayed by up to 1024 clock cycles, by writing to adc_delayX, where X runs [0,
31]. A minimum value of 4 should be used due to the BRAM-based implementation (values below

3 may result in a delay of 1021 cycles due to wrapping).



FFT top-level block

Sub-level PFB blocks

cous] UFix 32 ———— UFx 2.0
i 1 n > ab] < wew
R X ]
Use_fengine Slice

Create test vector (ramp counter)

Fix 8.7

= > .
Fix 8 7

= > -
Fix 8 7
Fix 8 7

s -
Fix 8 7

DS s
Fix 8.7

= > -
Fix 8 7

= > o
Fix 8 7

adc7 adc8

nc_mdl

[ sync_cnt

ool
syne_mdt ———p<"" sync_cnt_]

UFox_64_0

eq_cnt

out
UFix 640
eq_outt tv_64b_cnt

adc1

adc2

adc3

adcd

ades

adc

ade?

adc8

UFix_2_0

UFix_64 0

UFix_64_0
ut

UFix_64_0

The PFB/FFT for the 32 input signals is split into 4 sub-blocks, f0 —f3. The output of each is a

sync_rnd signal, which is the propagated sync pulse, and eq out, which is all 8 requantized 4-bit

input crammed together into a 64-bit word.

Two test vectors can be selected instead of FFT data using the ffi use fengine register. A value of
0 selects a 64-bit counter that counts to 8192 to be input instead of the FFT data. This is useful for

debugging channel offset issues. A value of 2 selects a 64-bit counter that counts to 264, this is

useful for comparing board synchronization. Setting this to 1 (i.e. True) will select the actual FFT

output.



ofo_sync] > y sync_out| T#1_syncl)
n_snn out_polt
- -
frma e e B [BBT_>—sfpolt ™ out o2l —»"_ 01}
CO——»lpon out ol — 0T [CBRT_>—»jpo2  outpon—s"T2I_]
e
CD——>jpon out_polt [—»<_ pT] [Com2—>—»po8  out pou(—»<_ (1]
pres
CGO—por out_poR—»-_[ph2] -_> _otow|
— [ BB _>—»pok  soton—3
CGO—>pos out_pol3 (—»< [p3] o
et
CO——pk oupok—><_ b4l | ot_sync) syme_out Z_synd]
s [poori > )
— 5]
O <= [ >l sni ouson
CO—>po8 out_pol —- Ipto6]
L e
C——»por out_pol? —»-__ [pfo7]
= el 5 >—efee oasms
L ob 4
5> ousme
(5T > epot w3

Inside each sub-block is 1x PFB FIR frontend, and 2x FFTs. Both of these are blackboxed.

=
3
3
g
i

sync sync_out

=
2
g
i

fft_shift out_pol1
pol out_pol2
pol2 out_pol3
pol3 out_pol4
pol4 ¥ fft_oflow
fft_biplex_real_4x
13 stages
[18,18]
Round (unbiased: Even Values)
Wrap

The core of each fft sub-block is of course an FFT. This is blackboxed (so in a separate simulink
diagram), but has 13 stages (213 point FFT), and is a biplex_real _4x CASPER block.



1 E—b sync sync_out > Out

m

sync sync_out

1 F——>[n  |——>{pol0in0 pol0_out0 > out
pol0 out_pol0

1 ——n  |——»{paitin0 pol1_outd > out
polt out_poll

o S P "o
pol2 out_pol2

1 —DD—D pol3._ind pol3_out > out
pol3 out_pol3

1 —»D—» pold_in0 pold_out0 > out
pol4 out_pok

1 ——»ID—» pol5._ind pol5_outd > out
pol5 out_pol5

1 ——n | ——>{pein0 pol6_outd > out
pol6 out_polé

1 ——n  |——»{porim0 pol7_outd > out
pol7 ¥ out_pol7

pfb_fir_generic

As the F-engine is a polyphase filterbank, the FFT is preceeded by an FIR low-pass prototype
filter. This is also blackboxed.

ome o
coote_out —— »<{Ea0_sync_ow)
cg
sme syno_out S&D)
(> T .
. =
eq0

sme yno_oul——»{3
(oo > s o< o]
e e

Also under the FFT block is a 4-bit requantizer. This takes the 18 re 18 im signal from the FFT

and converts it down to 4 _re 4 im in the range [-7, 7]. In order to select the relevant bits, the



signal is pre-multiplied on a per-channel basis, by a value written to a shared BRAM
fit f10] cg bpass bram.

[ ad > c 740D »| reinterpret >dn
power_dsp48e2 Reinterpret3
3

a7 soas |
pipeline3

a trig
Latency = 4 a=b

Counter1 b
posedgel rms_mon_4b
Relational

Constant2

The final item in under a FFT block is a shared BRAM fft f0 rms mon_4b, which is essentially a
4-bit, single integration spectrometer. It allows the 4-bit quantization value to quickly tuned by

providing an instantaneous snapshot of quantized values.

10



tirgat

Select tutween PFB ot bypaxs PFB

Sph! bedaewn PFE ard biypeses conven

i
alercy o |
a4 21 q 1
s T}

peaine10

q 2*1 Q
= I J

poenel!
q 21 Q

peainel2 -
3 21 q

poaineld
@ 2%1 Q

i) &

poeneld
4 2™1 q

peuinelS -
3 21 q

i &

prainelt
Ladercy » 1

n

IERRRRRX

There is now a register ff _f/0] bypass, which can be used to bypass the polyphase FIR frontend.

11



PKT top-level block

|rst_seq_no >

[new_fit]

[n_chanps

dhand

[fit_data]

[chan_stst0

| data_in

40000

| data_vakd

e

ix_data p—o

tx_vakd p—

x_eof b—

ip_addr sel —

!stan_chanl> P first_chan
filo_pc_full b—
EbeOO_en > »{ gbe_en
packetizer
CINE dz*1q st led_up dz'1q
Latency = 1 od_rx b Latency = 1
dz'1q tx_data
o 57T ]
— Latency = 1 LB m
-
v dz*1q tx_valid e
I — Latency = 1 1x_overfiow §500_of negedge_delay Latency = 1
[ =
[lx_desl_lp] > :'Id Z*q Il »|tx_dest_ip _data
Latency = 1
Sl rx_vaiid P
>|d Z*q | P tx_dest_port
9be02_en Latency = 1 ™ _souce p P
and »ldz*1ql
'Id " q' tx_end_of_frame rx_source_port [
Latency =1 LD |
1 »dz1 q L x_ack
] |:ll g\ A | rx_bad_frame [
x_ack Latency =1
»dz1qk r_overrun B
dz*1q r:(_ovcnun_lck
Latony = —
1
dz'1q
C00_eof | (atoncy = 1

gbe0_linkup

out_reg sim_out =

gbe0_full

out_reg sim_out =l

gbe0_dest_ip

The packetizer selects channels to be sent out over 10GbE and sends them to the compute nodes.

12



Bool
[oen > sfirs
s \.rz ) e |20 Esﬂu i mu- F ] urus,n- UFs 16 0 <)
.-—b-—b_ n_rog|— & .—; - din Slicad S— sipelne?
b ongbie vipeined  Slical? change_on_rig O= ey Latency = 1
ot Latency = 1 Sliced
o> e e e g s =)
2yn.in oot T pipeined
y . X Caoncy =1
wsd gbe0_n_chan_por_sub L‘::“":"f requpd
Bool
Iuym—mﬂ\am s wst gr;Lninm persib L’:"":‘f‘ requpd
Bool
e - e o) e e Mfm e L Ly
new 2 4 - ] 3 - L
ot to = ws2 gbe0_n_subband L”“_’“f"f requps
count t Tinput Slency =
M lengtht Uk 180 e md >0 e in
1_count? =) que\,n,smmu L":‘L‘"":"‘j‘ requpt
|Start and stop channel logic}
syno_in
- UFx_16.0
UFx_ 16 0 - UFx 16 0 d_out w
IE:H dZ*1 q din
wsd gbe0_start_chan Pipeined2 pipelined regup?
1 " Lalency = 1 Lalency = 1
inpu
syno_in
- UFx_16.0
UFx_ 16 0 . UFx 16 0 d_out w
IE:H dZ*1q din
w5 gbed_stop_chan Pipeine32 Pipelne31 regup8
1 " Lalency = 1 Lalency = 1
inpu
Bool
A (TR
coutia |uFe 160 UFx_16_0 UFx 16 0 UFx 16 0 d_out f——— <{Stan_chant|
e s Ak e 1 e g s
ws7 gbel_start_chan pipe Pipoine3d regupd
- . Latency = 1 Lalency = 1
input ! !
Bool
symein UFx_16_0

gbel_stop chan

Tirput

UFx 16

pipelneé
Lalency = 1

pipelned

Lalency = 1

0 d out
m UFx_16 0 371 g UFx_16 0 »ldin |

|

regupl10

The packetizer has a whole bunch of user-configurable registers. The change on_trig and regup

blocks are used so that values only change at the start of a PPS/FFT/sync window.

13



The user-configurable registers are:

Packetizer control
registers

pkt_roach_id

Roach ID number. Should run 1-16, used to identify ROACH

pkt_gbeOn_chan_per_sub

Number of channels per subband for gbe0 packetizer.
Allowable values are 10-144
Updates only after adc_rst

pkt_gbel n_chan_per_sub

Number of channels per subband for gbel packetizer.
Allowable values are 10-144
Updates only after adc_rst

pkt_gbe0_n_subband

Number of subbands for gbe0 packetizer. Total number of channels sent
will be n_subband x n_chan_per_sub.

Allowable values are 1-32

Updates only after adc_rst

pkt_gbel n_subband

Number of subbands for gbel packetizer. Total number of channels sent
will be n_subband x n_chan_per_sub.

Allowable values are 1-32

Updates only after adc_rst

pkt_gbe0_start_chan

Start channel (lowest channel in range) for gbeO.
Allowable values 10-4000
Updates at the start of each FFT window

pkt_gbe0_start_chan

Start channel (lowest channel in range) for gbel.
Allowable values 10-4000
Updates at the start of each FFT window

pkt_gbe0_stop_chan

Stop channel (highest channel in range) for gbe0.
Allowable values 20-4095
Updates at the start of each FFT window

pkt_gbel_stop_chan

Stop channel (highest channel in range) for gbel.
Allowable values 20-4095
Updates at the start of each FFT window

pkt_tx_enable

Enable data flow. Controls data flow for both gbe0 and gbel. LSB is for
gbe0, LSB+1 is gbel. To turn both on, write a value Ob11 = 3. To turn on
gbe0 write 0b01=1 or for gbel 0b10=2

Updates at the first FFT window after a PPS

pkt_ts_rst

Reset 10 GbE cores. Only needs to set high once, during INI, to
configure the 10GbE core.

14



15



10GbE setup

[lp addr_sel] addr
O S awn oo | sFTTE——»<iw]
0f[——pjdata_in data_out [tx_dest_ip] ‘ 0] v tency
‘ ol—’ we ip_wed gbe0_ip_port_bram
= ™
Of—— pfdata_in data_out ‘._OJ g e
‘ 0 > we - '
0| ——pfwe |
Packetizer control
BRAMS
pkt_gbe0_ip_addr_bram List of IP address to send to. This should be the same length as
pkt_gbel _ip_addr_bram the n_subbands; each subband is sent to a corresponding IP in
this list.
pkt_gbe0 _ip_port_bram List of IP ports to send to. This should be the same length as the
pkt_gbel _ip_port_bram ip_addr bram.

16



rst

gboo of - Latency
cnirs dZ*1q
gbOO 307\/ Latency

cnt_rst dZ*1q

lgb01_of

b01_eo

Latency

‘cnt rst dZ*1q

g - Latency

einterpret

Reinterpret

Packetizer output
registers

»len ++ dzZ*1q out_reg sim_out —P@
L
tx_of _count Latency = 1 gbe0_oflow_cnt
rst
»lon ++ dZ*1q out_reg sim_out —D@
tx_of_count1 Latency = 1 gbe0_eof _cnt
rst
»lon ++ dZ*1q out_reg sim_out ——DE]
tx_of_count2 Latency =1 gbe1_oflow_cnt
rst
»len ++ dZ*1q out_reg sim_out —P@
L
tx_of _count3 Latency = 1 gbe1_eof_cnt
»  cast dZ*1 g outreg  sim_out —{=]
Convert4 Latency = 1 fifo_pc_full

pkt gbe0 oflow_cnt
pkt_gbel_oflow_cnt

This register will be >0 if there’s overflows happening in the
10GbE core. This probably means that your n_subbands *
n_chan_per sub is too high.

Only used in debugging.

pkt_gbe0 _eof cnt
pkt_gbel_oeof cnt

Count of how many end of frame (EOF) have passed. More
simply, the number of packets send out over the 10GbE link.
Only used in debugging.

pkt_gbe0_linkup
pkt_gbel_linkup

A register that shows if the 10GbE core is configured and the
link is up. Returns 1 if up, 0 if down.

17



