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ABSTRACT

The Large Aperture Experiment to Detect the Dark Ages (LEDA) has the goal to

detect the sky-averaged absorption spectrum of the HI 21cm line from the intergalac-

tic medium at 15 < z < 30 which manifests through a broad spectral feature. In

order to take first steps toward achieving this goal, a prototype system was developed

at the first station of the Long Wavelength Array (LWA1) to explore the feasibil-

ity and to provide the technical advances required for this endeavor. The deployed

system consists of a 64 input digital backend based on a hybrid FPGA/GPU FX

correlator design. This is combined with newly designed frontend electronics that

allows absolute calibration of the sky-averaged power. Here we provide an overview

of the experimental setup and investigations from first observations of this system,

informing technical challenges for this difficult measurement. This includes investi-

gation of systematics in the deployed system, long-term stability of the system, and

calibrated sky observations. This system, in its current state, already provides a

platform for continued development of cosmological observations. In addition, it is

already able to provide valuable monitoring capabilities on the conditions of the iono-

sphere above the array and for absolute flux calibration of astronomical observations

in concert with routine LWA1 observations, especially providing the zero spacing flux

for interferometric observations.

1. INTRODUCTION
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The Large Aperture Experiment to Detect the Dark Ages (Greenhill & Bernardi

2012)1 aims to measure the sky-averaged absorption spectrum of the HI 21cm line

from the intergalactic medium at 15 < z < 30, as seen against the cosmic microwave

background. The goal is to characterize the thermal history of the universe through

the end of the cosmological Dark Age and onset of X-ray heating of the intergalactic

medium (Pritchard & Loeb 2012). Measurements with a single dipole principally

allows the extraction of the absorption signature imprinted on the sky-averaged spec-

trum. These measurements are challenging both from the calibration and from the

data analysis perspectives where the expected signal is of the order of 50 mK – 100 mK

depending on the model assumptions, see e.g. (Fialkov et al. 2014), and is superim-

posed with the ∼3000 K foreground emission. The LEDA concept combines antennas

outfitted for radiometry together with a large-N interferometric array that allows

to directly derive in-situ calibrations of e.g. sky models, broadband polarized an-

tenna gain patterns, and helps with calibrating out ionospheric fluctuations. Here

we present the additions made by the LEDA project to the first station of the Long

Wavelength Array (LWA1).

The LWA1 is located near the center of the NRAO managed Very Large Array in

New Mexico, USA. The LWA1 array configuration is optimized to be an element for

a larger beam-forming array. Even though LWA1 is conceived as just one element

of many, it is currently a dedicated radio telescope distinct from, but supportive of,

the separate effort to build a long-baseline aperture synthesis instrument. A detailed

description of the LWA1 station architecture can be found in Taylor et al. (2012) and

Ellingson et al. (2013)2. In 2013, driven by the LEDA project, a second array was

constructed at Owen’s Valley Radio Observatory (LWA-OVRO) under the lead of

Caltech, which is currently undergoing early science and commissioning observations

(Hallinan 2016)3. While LWA1 is optimized for beam-forming as part of a larger

instrument and has a well-filled compact aperture, LWA-OVRO is optimized for all-

sky imaging with an emphasis on longer baselines up to a few km in length.

Similar approaches to the LEDA total sky power measurements have been mostly

focused on the detection of the Epoch of Reionization, which is expected to be a weak

excess of emission detectable in the range of 70–200 MHz, e.g. the Experiment to De-

tect the Global EoR Step (EDGES; Bowman et al. 2008), the Broadband Instrument

for Global HydrOgen ReioNisation Signal (BIGHORNS; Sokolowski et al. 2015), the

“Sonda Cosmológica de las Islas para la Detección de Hidrógeno Neutro” (SCI-HI;

Voytek et al. 2014), or the Shaped Antenna measurement of the background RAdio

Spectrum (SARAS; Patra et al. 2015).

In Section 2, we provide an overview of the additions made to LWA1 to accom-

modate the LEDA prototype system. This includes the description of the deployed

1 https://www.ledatelescope.org/
2 http://lwa.phys.unm.edu/
3 http://www.tauceti.caltech.edu/lwa/

https://www.ledatelescope.org/
http://lwa.phys.unm.edu/
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digital backend, required modifications to the signal paths to allow non-interfering

observations with LWA1, and the design and construction of “outrigger” dipoles with

specialized frontend electronics for total sky-power radiometry. Section 3 contains a

description of characterization and commissioning tests conducted with the deployed

LEDA hardware. This is followed by a brief summary, conclusions, and outlook in

Section 4.

2. HARDWARE AND SPECIFICATIONS

To accommodate the LEDA prototype system at LWA1, a range of modifications

were made: alterations to the signal paths of a subset of LWA1 antennas (Sec. 2.1), the

installation of additional dipoles separated from the core array (Sec. 2.2), the design

and installation of a new digital backend allowing wide bandwidth full correlations

of a subset of dipoles (Sec. 2.3), and the addition of a total power capture system for

radiometry (Sec. 2.4).

2.1. Signal Path

For this project, custom built signal splitters are used to pass 64 signal paths coming

from the output of the LWA1 analog receivers to both the LEDA prototype backend

and the LWA1 digital backend. This allows for independent regular operations of

LWA1 alongside LEDA and reduces the need for re-routing and re-wiring antenna

signals manually into the LEDA digital backend. After analog filtering and amplifi-

cation, the dipoles signals are output on RJ45 cables with each cable carrying two

cross-dipoles. The analog signal splitters were designed into four shielded boxes, each

accommodating the circuitry for 4x4 signals, differential pair analog inputs. Each

balanced pair is first converted to unbalanced (single-ended) with a 2:1 transformer

(Minicircuits TCM2-1T+) and split into two signals with Minicircuits TCP-2-10 split-

ter/combiner. Each signal then goes to a failsafe switch (Hittite HMC550E) that

provides high-isolation on/off control for each possible operating combination. This

allows control over the output of the signals both to LEDA and the LWA1 digital

backend (DP) or respectively to LEDA/DP only. The signals for DP are output

through standard RJ45 connectors, while the split signals for LEDA are aggregated

onto a single Samtec Vport connector type VPSTP4 going onto a high density shielded

twisted pair cable with 16 pairs each connecting to the LEDA backend described in

Section 2.3. The Vport connector was chosen due to limited space available for pass-

throughs into the shielded rack, housing the LEDA prototype digital backend. This

has also the advantage of fewer cables required to connect from the splitter boxes to

the bulkheads. In Figure 1 one of the four assembled splitter boxes is shown together

with a block diagram of the described splitter design.

The physical location of the selected 64 signal paths, which corresponds to 32 cross-

dipoles, is shown in Fig. 2. This configuration was chosen to provide a uniform

4 This connector type was discontinued by Samtec after 2012.
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Figure 1. Left: One of the four splitter boxes assembled, the RJ45 pass-throughs on
the sides connect the inputs, the top RJ45 pass-throughs connect the outputs. The Vport
connector is seen to the lower left. The DIN 41524 connector provides access to control the
output states. Right: Block diagram for one of the 16 channels of each splitter box.

Figure 2. Configuration of the selected 64 signals from 32 cross-dipoles passed to the
LEDA digital backend at LWA1. With the outrigger numbers marked for reference, see
Sec. 2.2. The plot origin marks the center of the core LWA1 array.

coverage of the Fourier plane using a limited number of LWA1 dipoles and to include

“outrigger” dipoles well separated from the core array. For further information on

“outriggers” see Sec. 2.2. In Table 1 we list the coordinates of the selected dipoles,

together with their antenna stand identification number. A more detailed listing of

the technical parameters, like cable mapping, can be found in Schinzel & Dowell

(2013).

2.2. Outrigger Antennas
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Table 1. Parameters of the dipoles selected for the LEDA digital backend. Figure 2
illustrates the configuration with respect to the origin of the array.

Stand # x1 y1 z1 FEE type2

229 +40.879 -22.745 +2.163 LWA1

154 +26.813 -33.107 +2.598 LWA1

260 +167.559 +295.101 -5.692 LEDA

198 +31.936 +16.216 +0.928 LWA1

207 +37.328 -27.243 +2.292 LWA1

215 +38.546 -2.728 +1.561 LWA1

018 -1.004 +47.373 +0.142 LWA1

252 -48.237 +2.938 +1.572 LWA1

259 +405.278 +167.840 -1.462 LEDA

121 -18.961 +44.288 +0.092 LWA1

020 +7.905 -51.405 +3.153 LWA1

257 -56.028 +202.187 -5.687 LEDA

035 +241.373 -58.617 +2.882 LEDA

108 +13.358 +7.672 +1.216 LWA1

203 -32.628 +32.437 +0.567 LWA1

258 +338.911 +19.778 +1.670 LWA1

157 -22.802 -26.433 +2.369 LWA1

174 +26.906 +26.732 +0.474 LWA1

226 -35.852 +28.440 +0.763 LWA1

240 -43.194 +10.904 +1.395 LWA1

127 -19.651 -32.303 +2.562 LWA1

153 -28.816 -37.441 +2.704 LWA1

123 -25.670 -43.331 +2.794 LWA1

172 +29.113 +22.236 +0.739 LWA1

253 +48.643 +5.271 +1.278 LWA1

006 +1.885 -26.034 +2.298 LWA1

255 +48.814 +11.217 +1.178 LWA1

064 +11.743 -24.907 +2.300 LWA1

012 -1.338 +14.429 +1.052 LWA1

042 +6.985 +15.420 +1.006 LWA1

250 -48.592 -2.249 +1.717 LWA1

114 +16.652 +28.583 +0.485 LWA1

Notes:
1 in units of m with respect to the center of the LWA1 array, marked by a monument in the field
and with the approximate coordinates of latitude 34.068891◦ and longitude -107.628367◦. A
positive x coordinate lies East of the origin, a positive y coordinate lies North of the origin, z
corresponds to the elevation ∼1.5m above ground.
2 notes which type of frontend electronics is used (LWA1 production or LEDA switching).

Additional dipoles were added to the LWA1 core array to supplement its resolu-

tion and to reduce the effect of mutual coupling for those particular dipoles. In the

following we refer to those dipoles as “outriggers”, which are of the same design as
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Figure 3. Aerial imagery of the area surrounding LWA1. Red areas mark regions that
were excluded by the boundary conditions described in Section 2.2, shades of green from
bright to dark mark the common plane with LWA1 of the terrain with the color range from
dark to bright indicating the maximum allowable deviation of 1 m and 5 m respectively.
The RTA marks a fenced area East of LWA1 where one dipole was placed for cable delay
calibration purposes. The black solid lines indicate overhead powerlines.

LWA1 dipoles. These outriggers are to be used to provide total power time series,

while the improved resolution of the array can be used to refine the formulation of

the point source component of a sky model. The long baselines provided by the

outriggers decrease the low-spatial-frequency component of the sky noise correlation,

and increases fringe rates, which improves the performance of fringe-rate filtering.

Although LEDA does not anticipate the use of fringe-rate filtering, it benefits from

decorrelation of unwanted signals and thus allows for better point-source-based cali-

bration and diagnostics (Ellingson 2011). In long wavelength arrays, mutual coupling

between antenna elements results in fluctuation of beam gains and sidelobe levels

when the antenna spacing is less than a few wavelengths. For outriggers suitable

for the LEDA project this means the farther the outriggers are from each other the

better, but no less than a few hundred meters, which in case of LEDA translates to

about 10-20 wavelengths and minimizes mutual coupling. For antenna separations of

100 m the sky noise correlation becomes minimal. Between 38 and 74 MHz, the sky

noise correlation combined with the effect of mutual coupling reduces the senstivity

by only a few percent for pointings more than 20◦ away from zenith (Ellingson 2011).

The construction of outriggers was heavily constrained by additional requirements:

they had to lie within the NRAO/NSF owned square mile, must be at least 200 m

away from the VLA antenna assembly building, must be at least 140 m away from any

VLA antenna pad, at least 100 m away from overhead power lines, at least 5 m away

from any metallic fence, and must be separated from LWA1 or any other antenna

element by at least 150 m. Additionally, the antennas should fall within the same
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Figure 4. The top row shows the snapshot u, v-coverage of 5 outriggers combined with
the LWA1 core dipoles from Table 1 at 50 MHz. The center column represents the result-
ing beam with natural weighting, the right column corresponds to the beam pattern with
uniform weighting. The bottom row shows the resulting u, v-coverage and beam patterns
for a 12 hour integration of the 32 dipoles. The contour levels for the beam plots are 70%,
50%, 35%, and 10% of the peak value, which corresponds to about -1.5, -3.0, -6.0, and -10
dB, respectively.

horizontal plane as the core-array of LWA1 with <5 m deviation. In Figure 3 we

show a map with green shaded areas that represent areas matching the common

plane with LWA1 with an acceptable deviation of up to 1 and 5 m (shades of green

from dark to light). The entire area deviates by less than 10 m from the common

plane with LWA1. We selected a Reuleaux triangle configuration for placement of

dipoles (Keto 1997). The triangle was chosen to have one leg pass across LWA1 and

covering a diameter of 450 m. One outrigger was placed near the North-West corner of

the triangle (#1), one along the East-West extent (#2), one at the North-East corner

(#3), and one at the area marked RTA (#4), a fifth outrigger was placed between

the Rapid Test Array (RTA) area and LWA1 (#5), as indicated in Fig. 2. This

configuration provides a maximum baseline length of about 510 m. Configurations

with larger maximum baseline lengths of about 800 m were not feasible under the

given constraints and if all legs of the triangle were to be populated. The resulting

simulated u,v-coverages for such a sparse array are shown in Fig. 4.

Since outrigger #4 East of the core array already existed, only 4 additional outrig-

gers had be constructed (#1,#2,#3,#5). The areas around each of those outriggers

were fenced using vinyl fencing to prevent cattle from disturbing the dipoles while

avoiding mutual coupling with metal structures in the vicinity of the dipoles. The
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fenced areas have a size of about 5x5 m each, corresponding to the dimension of the

ground screen. Each of the fenced areas is connected with two LMR400 buried co-

axial cables for the two polarizations of the dipoles. For future purposes a separate

power cable and a 6-strand fiber optical cable connecting to the LWA1 electronics

shelter were also added to allow transmitting the analog signals over fiber optics if so

desired.

2.3. Digital Backend

The analog signals arriving from the splitter boxes are directly passed to four sep-

arate analog digital converter cards that were designed for this project. Each card

has four Hittite HMCAD1511 8-bit analog digital converter (ADC) integrated cir-

cuits which allows for a maximum of 16 analog differential inputs to be digitized per

ADC card. The ADC card was developed for LEDA through the Collaboration for

Astronomy Signal Processing and Electronic Research (CASPER) at University of

California, Berkeley5. Each of these cards are attached to one of the expansion ports

of a standard ROACH2 revision 2 board that includes an enhanced RISC architecture

CPU (Power PC) and a Xilinx Virtex-6 SX475T FPGA. This allows for digitization

and conversion to the frequency domain of up to 64 analog signals. The digitized

and Fourier transformed data are then passed to GPU compute nodes forming a

FPGA/GPU hybrid correlator. Kocz et al. (2014) provides a detailed description of

the correlator design and correlator commissioning results using the here described

setup, with further discussion of a full deployment of this design for 512 inputs at

LWA-OVRO in Kocz et al. (2015). In this paper we focus on the single dipole autocor-

relation output of the correlator only. The LWA1 installed configuration allows three

different modes of operation. The correlator can be run with 1 s and 9 s averaging. In

addition, there is a spectrometer mode that provides the full time resolution of the

FFT spectra from the FPGA, however due to data rate limitations, it is only able

to record data from up to four dipoles at a time. In the typical mode of operation

we obtain 2400 spectral channels ranging from 29.976 - 87.552 MHz with a channel

width of 24 kHz split in four different spectral windows. The correlator is run with 1 s

averaging on all baselines. In post-processing non-outrigger baselines are then aver-

aged to 9 s to reduce the total data volume, while still allowing calibration using the

outriggers switched frontend electronics described in the following section. A typical

night time observation of 12 hours corresponds to a data volume of 1.6 TByte at 1 s

time resolution or 400 GByte averaging non-outrigger baselines to 9 s.

2.4. Total Power Capture System

The receiver chain of any radio telescope suffers from gain variations which are

mostly due to environmental effects. In the case of LWA1 the largest contribution

to short and longterm gain variations are temperature variations both within the

5 https://casper.berkeley.edu/wiki/ADC16x250-8
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shelter in which the station electronics are housed primarily due to cycling of the air

conditioning units (Schinzel 2013). An even larger effect have diurnal and seasonal

temperature changes affecting the pre-amplifiers embedded in the frontend electronics

at each antenna stand. Altogether, these effects can amount to gain variations of the

order of 10%. In order to capture the total sky power from individual dipoles and

to be able to compensate for receiver gain changes, special frontend electronics were

installed at each dipole, replacing the standard LWA frontend electronics boards at

the antenna.

The design of these frontends is based on the three state switching concept developed

for the EDGES by Bowman et al. (2008). In this concept the absolute sky temperature

convolved with the dipole beam pattern can be measured by switching between the

sky, an ambient load, and an ambient load plus a calibrated noise source. The sky

temperature convolved with the dipole beam pattern (i.e. the antenna temperature)

can then be derived by calculating for a given frequency,

Tantenna = TC

(
PA − PL

PC − PL

)
+ TL, (1)

where PA is the power on the antenna, PL is the power on the load, PC is the power

on combined load and calibration noise, TC is the excess calibration noise, and TL
is the ambient load temperature. Assuming a priori knowledge of TC and TL, the

absolute sky temperature can be be measured by calibrating out the entire chain’s

bandpass characteristics.

In the first deployment of these newly designed switched frontend electronic boards

the three states are selected by different bias-T voltages, detected with a comparator

circuit. The temperature of the noise source and calibration load are stabilized using

a semiconductor heater and are defined to be TC = 370 K and TL = 298 K. The

assembly contains a 4:1 balun (Minicircuits ADT4-6T), an electromechanical relay

to control the three states, a SM-4 diode and 30 dB attenuator circuit, as well as a

Minicircuits Gali-74 amplification stage (+25 dB), followed by a 200 MHz low-pass

filter and a Minicircuits Gali6 amplifier (+12 dB). In Fig. 5 a picture of the manually

assembled PCB as described here is shown together with a block diagram.

The antenna impedance mismatch efficiency (IME) needs to be taken into account,

ignoring possible ground reflections, in order to determine the sky temperature. The

IME is defined as 1− |Γ|2. Where Γ is the reflection coefficient, defined as:

Γ =
Zpre − Za

Zpre + Za

, (2)

where Zpre is the input impedance of the pre-amplifier (including balun) and Za is the

antenna self-impedance. The expected IME of a LWA dipole into 200 Ω is shown in

Fig. 6, which is based on simulations of the LWA1 dipole design described by Hicks

et al. (2012) and assuming a real-valued input impedance. A direct measurement

of the IME is extremely challenging at long wavelengths, future work will address
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Figure 5. Top: A picture of one polarization of the frontend electronics of the total
power capture system, featuring a three state switching scheme between sky, load, and load
plus noise source. This board represents the second revision before a thermal housing was
added around the temperature stabilized components. Bottom: Block diagram of the radio
frequency components of the frontend electronics pictured on the top.

deviations of the model from the field deployed dipoles. The expected calibrated

antenna temperature is then, Tantenna = (IME)Tsky. The impedance mismatch of

the frontend was chosen to avoid or minimize spectral inflection points in order not

to be confused with the expected cosmological signal, which is expected to be of the

shape of a spectral trough.

Typically, the analog receiver input at LWA1 provides a Bias-T DC voltage of

+15 V to power the frontend electronics using the same coaxial cable on which the

radio frequency signal is broadcast. In order to provide a control over the switching

states (+15 V, +16 V, and +17 V), small Bias-T boards were added to the signal

chain allowing one to manually set a voltage level that can be preset using three step

attenuators. These boards also allow an automatic advance through a TTL signal,

for which we used the pulse per second from the station clock. Thus in this mode,

the three states are cycled through in 1 s steps. For the outriggers outfitted with

switching frontends a DC-block was added at the input of the LWA1 analog receiver

end. The radio frequency only signal is then connected to the Bias-T board, which
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Figure 6. Simulated LWA dipole antenna impedance mismatch efficiency, shown in terms
of reflected power, into a 200 Ω impedance (LEDA rev. 2), compared to the regular 100 Ω
of LWA1 frontends.

adds the corresponding voltage level, which is applied to the frontend electronics.

Each Bias-T board is designed to handle two signal paths, to ensure that the two

polarizations on each outrigger antenna are in the same state at all times. During

2015, the Bias-T boards were revised to allow full remote control over switching cycles

using a micro-controller. The typical settle times for the voltage level changes are on

the order of 500µs – 4 ms.

3. CHARACTERIZATION AND FIRST MEASUREMENTS

In this section we discuss first measurements using the above described components.

The goal of these measurements was to obtain a first understanding of the radio

frequency environment at LWA1, to determine system stability, and to validate the

total power calibration strategy using the switching frontends.

3.1. Commissioning Tests of Outriggers

After construction of the outriggers was complete, the antenna stands were equipped

with LWA1-type frontend electronics. The goal in this stage was to perform intial

signal path testing and to commission the outrigger dipoles using the well understood

LWA1 digital backend. We performed initial correlation tests that showed unexpected

features in the magnitudes and phases of the correlation products. Most noticeable

were strong DC offsets in the fringe rate plots for most of the baselines which in turn

desensitized those baselines to the point that they were not usable as is. This lead to

a detailed analysis of the issue which is summarized in the following.

Different scenarios that could explain the observed strong DC components were

explored. On a system intrinsic level, signal cross-talk as well as common modes can
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be the cause of strong DC components. Initial investigation of strong DC components

found in cross-correlation of individual dipoles from narrowband timeseries voltage

captures revealed a persistent pattern of high DC components from correlations of

dipoles with signal paths going through adjacent channels on a given analog receiver

board. This led to the conclusion that enhanced cross-talk is present for signals using

the same RJ45 output of the analog receiver board and in most cases results in a

dramatically increased DC component when correlating those signals with each other.

In addition, the routing of traces on the analog receiver boards are conducive to cross-

talk and noise pick-up. In-situ measurements of this cross-talk using a signal generator

determined an isolation of 12.2 – 46.8 dB depending on the channel pairs (Schinzel

& Dowell 2014). This has significant consequences for the quality of correlation

products and potentially reduces the fidelity of sky maps obtained from the inclusion

of all baselines, but could also affect the quality of single dipole data. To minimize

this effect for the outriggers, the signal paths of the outriggers were separated to use

five different RJ45 cables on different analog receiver boards.

However, eliminating all possible instrumental causes of high DC components we

further investigated using baseline combinations of all five outriggers. We performed

observations with the LWA1 digital backend and found that the stand combinations

257–260, 258–259, and 108–35 showed particularly high DC offsets. The only logical

explanation that could be found for those strong DC components was of external

nature. Most affected by the DC offset were stand #257 (outrigger #1) and #260

(outrigger #2), in particular East-West polarization baselines. The possible source

of this external interference are the powerlines running in East-West configuration

providing power for LWA1 and the VLA. In a subsequent observation in November

2013 the presence and time variability of powerline RFI was confirmed with outrigger

#1 being the closest to the VLA antenna assembly building. Powerline RFI was

identified to be stronger while it was raining at the site, correlating with the intensity

of the rain recorded by the LWA1 weather station (Schinzel & Dowell 2013). The

DC components for all LEDA64 baselines were extracted for a period of low RFI

that was identified from the dataset. After removal of baselines that have signals

sharing the same RJ45 connection, the resulting distribution of DC components does

not show significant outliers and no high levels on long baselines. Since these tests

were performed, the powerline interference environment was significantly improved by

working with the powerline company, Socorro Electric Coop, to overhaul the entire

powerline infrastructure within the vicinity of LWA1 during the week of June 2nd

– 6th, 2014. The most commonly replaced part were the worn out ties holding the

conductor wire on the insulator producing air gaps for arcing, those were replaced

with new factory-formed ties and splices.

3.2. Total Power Measurements
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Figure 7. The left shows the obtained derivative values from the 1 s averaged spectral
power to determine the three different states. The right plot is a zoom to the first 10 s of
the dataset.

We conducted first commissioning observations at the end of 2013 and during the

first observing season in spring 2014. We used the full time resolution spectrometer

mode to verify consistent frontend state switching, to determine the rise and fall times

of state changes, and to verify day-to-day system stability and repdroducability. We

adopted calculating the derivative of the time series in order to automate determina-

tion of the time of state changes. After having confirmed that the high time resolution

data is captured correctly, the averaging time was increased to 1 s matching the 1 s

state changes. Since the station clock pulse-per-second is used both for timing of

the FPGAs of the digital backend and for switching the states at the frontend, each

1 s bin corresponds to data from one of the three states. An example on how well

the derivative of the state changes can be determined in 1 s data is shown in Fig. 7.

This also demonstrates the stability of the system and that the derivative is a reliable

way to automatically assign 1 s bins to their corresponding state. Thus we obtain a

spectrum for each state every 3 s, which are shown on the left in Fig. 8. In order to

attenuate low frequency RFI the analog receivers were configured to attenuate the

signals below 42 MHz.

In the following, the three state calibration is performed by calculating the antenna

temperature following Equation 1 for each group of 3 states and each of the 2400

spectral windows. The calibrated spectrum from 45–88 MHz is shown on the right in

Fig. 8, together with a model for the expected sky spectrum based on the global sky

model by de Oliveira-Costa et al. (2008). The data from 30-45 MHz corresponds to

the lowest spectral window of the correlator. It was flagged due to the analog receiver

filters set to attenuate the spectrum below 42 MHz to mitigate radio interference. At

first glance the overall spectral shapes are in agreement with what is detected. In

order to better visualize the residuals, the sky model is subtracted from the data. The

residual spectrum is shown in Fig. 9. The large ripples correspond to a wavelength of

6 m and are attributed to ground reflections that have not been taken into account.

Those ground reflections are fitted using an exponential decay convolved with a cosine-



14 Schinzel et al.

0

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

3e+08

3.5e+08

30 40 50 60 70 80 90

load + noise

Frequency [MHz]

P
o
w

e
r

[a
.u

.]

sky
load

45 50 55 60 65 70 75 80 85
Frequency [MHz]

0

1000

2000

3000

4000

5000

6000

7000

Te
m

pe
ra

tu
re

 [K
]

model X
model Y
035x
035y

Figure 8. Left: Spectra of each of the three switching states from a single polarization,
showing the sky, load (30 dB attenuator), and load+noise (30 db attenuator together with
SM-4 noise diode turned on). Right: Calibrated spectrum with sky models for both polar-
izations.

like wave function,

R(x) = e−x·a · b · cos

(
c · x+ d+

f

x

)
+ g, (3)

where a, b, c, d, e and f are free parameters to be fitted. The resulting residuals

after removal of the ground reflection is shown for a single polarization on the right

bottom curve in Fig. 9. The residual ripples of order ±20 K were identified to be

due to standing waves and reflections along the signal path. By adding attenuation

into the signal path, especially on the output side of the amplification stages of the

frontend electronics, the amplitude of those ripples can be dramatically reduced, as

illustrated by the top three curves in the right plot of Fig. 9, where increasing attenu-

ation was applied from 3 dB to 9 dB reducing the ripples to residual levels of around a

few Kelvin. Despite reducing the noise level, we were not able to completely eliminate

these systematics. Thus precludes deep integrations required for the detection of a

cosmological signal with this generation of frontend electronics. In next generation

designs this issue can be addressed by adding attenuation directly between amplifica-

tion stages in order to further reduce reverse gain and selecting amplifiers with lower

reverse gain. In addition, the solid-state switch could be replaced by an electrome-

chanical switch or a design could be chosen where the noise signal is mixed with the

sky signal, avoiding the need for switching states completely. Also, having the noise

signals of comparable power to the sky signal would potentially reduce effects causing

variations in the reverse gain that are not removed through three state switching.

Following verification of system operability, we conducted nightly observations be-

tween February 20th and May 29th, 2014 to verify system stability over a longer

time period. Radio frequency interference was excised using the sum-thresholding

technique which is described in Offringa et al. (2013). With this flagging method we

typically removed less than 11% of the entire data. In Figures 10 and 11 we show

the resulting time series and waterfall plots of the relative difference in calibrated
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Figure 9. Left: Residuals for outrigger #5 obtained on March 14, 2014 for a 1 hour
period covering 10.5 – 11.5 local sidereal time. The fit curve to the average residuals was
determined applying Eqn. 3. Right: Residuals after ground reflection is removed for different
attenuation levels of the signal path between frontend electronics and analog receivers.

sky power for 16 non-consecutive days for two hours centered around 11.0h LST be-

tween March 8th and March 29th, 2014. Especially around 70 MHz weak RFI that

remained in the data after flagging can be seen at the 3-5% level. Figure 10 shows

that the relative differences from day to day increase from ±1.0 % up to ±3.5 % to-

ward lower frequencies. Also, X polarization is more affected than Y polarization.

This is explained by the intrinsic properties of the ionosphere, where attenuation and

emission effects become more pronounced toward lower frequencies. Also during days

of high broadband values around days 4–10, the remaining RFI is also pronounced

and is most likely due to radio transmitters reflecting off the ionospheric E-layer that

typically forms in spring and summer at LWA1 latitudes. The more pronounced ef-

fects in X polarization are most likely due to a higher sensitivity to structures in

the Galactic emission. However, the day-to-day variations, as well as the increase in

variation toward lower frequencies, can also be explained by the presence of strong

powerline RFI. We anticipate to repeat similar measurements in the future to better

characterize the ionospheric conditions following the mitigation of strong powerline

RFI. Despite this, these first observations indicate the day-to-day variation for a quiet

ionosphere can be expected to be less than 1% in absolute power and most likely will

not pose a significant problem for cosmological observations.

Finally, we present a 12 hour calibrated sky drift curve from outrigger #5 observed

on March 14, 2014, shown in Fig. 12. In this figure both a single frequency curve

at 74 MHz and the waterfall plots between 45 and 88 MHz for each polarization

are plotted. From the waterfall plot one can see that RFI flagging was performed,

however the amount of required flagging is very small, demonstrating the excellent

RFI quiet environment at the LWA1 site. These observations were performed before

a major overhaul of the nearby powerlines and thus are affected by power line RFI

primarily in X polarization, which can be seen as horizontal features in the waterfall

plot. The observations were performed during night time when the majority of the
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Figure 10. Time series plots of the relative difference for 48, 58, 68, and 78 MHz aver-
aged over 1 MHz of bandwidth each covering a time period of 16 days between 2014/03/08
to 2014/03/29 of data recorded from stand #35 covering LSTs from 10 - 12h. The two
polarizations are shown separately.

Figure 11. Waterfall plots of the relative difference for several frequencies averaged over
1 MHz of bandwidth covering a time period of 16 days between 2014/03/08 to 2014/03/29
of data recorded from stand #35 covering LSTs from 10 - 12h. The two polarizations are
shown separately.
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Figure 12. Left: Total power calibrated sky drift curve for 74 MHz for each polarization.
Right: Total power calibrated sky drift spectrum for 45 – 88 MHz for each polarization.

Galactic plane was not high on the sky. Toward the end one can see the galaxy rising

through the increase in observed total sky power starting around 12 h local sidereal

time (LST).

4. SUMMARY & CONCLUSIONS

Here we described the successful deployment of a prototype system to allow absolute

total power measurements with single dipoles in combination with the adjacent LWA1

array. We described the placement of additional dipoles around the LWA1 core array,

the modifications that were made to the LWA1 signal paths, including the addition

of a separate digital backend. Development and deployment of special switching

frontends was of particular focus. These allow calibration of the recorded total power

signal using the EDGES three state switching scheme, providing in-situ corrections

for gain changes in the receive system.

The system was tested for systematic limitations and long-term stability that could

affect future cosmological observations. In the process of this we noticed increased

cross-talk between channels in the analog receivers. As a consequence of which we

have already partially addressed this in a new analog receiver design that was deployed

at a new LWA1-like station at Sevilleta National Wildlife Refuge. It uses an updated

design of the analog receiver boards where the input signal traces were better isolated,

mitigating cross-talk and noise pick-up. In addition, we note that an alternative

connector for the analog signal output with better signal isolation could be used in

future upgrades, which is a modification of the RJ45 connector currently used, namely

ARJ45.

We performed residual measurements of the newly designed frontend electronics to

check for systematic limitations in the calibrated total power data and check for its

suitability for detecting the cosmic dawn signal. Those first measurements revealed
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ground reflection ripples at the level of ±40 K over a sky signal of 2000-6000 K. By

fitting and removing those large ripples we were able to obtain residuals of±10 K. This

corresponds to a removal of foregrounds by a factor of 100–300. We demonstrated that

added attenuation reduces reflections within the signal path and thus the residuals

could be reduced to a few Kelvin. This is clearly not enough to achieve a detection of a

cosmological signal that is of the order of mK. However, future iterative improvements

to the frontend electronic designs are informed by these preliminary measurementes

where we anticipate to address current limiting systematics to push residuals into the

mK regime. We anticipate to improve the frontend electronics in future iterations:

providing better isolation of the amplification stages, bringing the noise levels of the

reference noise sources closer to that of the sky temperature. This has the goal to

achieve residual levels that are close to the expected thermal noise limits, which will

then allow integration of the observed sky power. Some of these issues we have already

addressed in a new design of the switching frontends which will be discussed in Price

et al. (2016) and Bernardi et al. (2016).

We performed observations on a day-to-day basis over the course of a month in

order to test the overall system stability. It turned out to be remarkably stable

with the strongest influence on the observed average power being the ionosphere

and powerline RFI at levels of ∼4%, which makes the existing system suitable for

radiometric monitoring of ionospheric conditions. In addition, observations of the

total power with this instrumentation is used for zero-spacing absolute flux calibration

of astronomical all-sky maps produced using all 256 dipoles of the LWA1 array (Dowell

et al. 2016) providing an improved model of the foreground emission of the sky, which

will be required to achieve detection of the predicted cosmological signal.

The deployed system will facilitate and enable measurements with future frontend

electronics aiming to detect the cosmological signal that is expected to be found in

the total sky power. In addition, similar measurements are also able to be performed

with the well tested LWA1 digital backend for better comparison of instrument sys-

tematics. Ultimately it will be possible to verify and confirm similar measurements

undertaken in a different radio frequency interference environment than at LWA-

OVRO in combination with simultanous sky and antenna calibration provided by the

full cross-correlated array in California.
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