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Abstract—Radio frequency beamforming arrays may be vul-
nerable to distortion caused by cables, especially when the
distortion is unequal between sensors. This paper analyzes the
effects of unequal per-sensor cable distortion on delay-and-sum
beamforming, and proposes methods to equalize the responses
using digital FIR filters. A simplified version of the LWA1 radio
telescope, consisting of 256 isotropic sensors operating between
10 MHz and 88 MHz, is used as an example. It is shown that
unequal and dispersive per-sensor cable response degrades the
signal-to-noise ratio (SNR) performance achieved by LWA1 by
0.35−0.86 dB. It is found that modification of the per-sensor FIR
filters used for beamforming delays can reduce this degradation
to 0.10 dB at least. A simpler single-frequency correction for loss
only is considered, and is also found to be effective.

Index Terms—Beamforming, Antenna Array, Radio Astron-
omy.

I. INTRODUCTION

A common approach to beamforming combines sensor out-
puts via a delay-and-sum operation. The beamforming delays
are selected to equalize the geometrical delays associated with
the sensors. Fractional sample period delays can be accurately
approximated using finite impulse response (FIR) filters, as
described in [1]. However, these systems may be vulnerable
to unequal and dispersive responses from physical components
such as coaxial cables. Coaxial cable is a commonly-used type
of transmission line used in the systems of interest. These
cables exhibit frequency-dependent loss and delay. Thus equal-
ization of sensor signals may be required before summing.
The effects and equalization of cable loss and dispersion on
beamforming have been considered in [2], but the equalizer
was designed by trial and error and the solution was only
applicable to narrowband analog signals.

In this paper, we describe the problem of unequal cable
losses and dispersive delays, analyze the effects on delay-and-
sum beamforming, and propose a solution using per-sensor
cable correction FIR filters. The designs are considered in the
context of the LWA1 radio telescope [3]. However, this work
is applicable to a variety of systems which suffer from unequal
cable losses and dispersive delays; e.g., sonar arrays [4],
HF/VHF band riometers [5], radar arrays [6], and other radio
telescopes such as MWA [7], SKA [8], and LOFAR [9].

The theory of digital delay-and-sum beamforming is de-
scribed in Section II. The primary issue is obtaining the
coefficients of the delay FIR filter. The frequency response
of a coaxial cable is derived in Section III-A. The primary
difficulty in determining the correction filter is inverting the
frequency response of the cable. Our approach uses a three-
term Taylor series approximation as explained in Section III-B.

For an array consisting of N sensors, there are two candi-
date strategies to combine delay-and-sum beamforming and
equalization of unequal cable losses and dispersive delays:
the “concatenation” scheme shown in Figure 1, and the
“combination” scheme shown in Figure 2. For the nth sensor,
the combination approach uses a single FIR filter Hn(ω)
to simultaneously perform the functions of H−1

cn (ω) and
Hbn(ω); where H−1

cn (ω) is used to correct the attenuation and
dispersive delay in the cable connected with sensor n, and
Hbn(ω) provides the geometrical delay for the delay-and-sum
beamforming. The combination scheme has the potential to
yield a smaller overall filter length, possibly also resulting in a
corresponding reduction in implementation complexity, power
consumption, and cost. For these reasons, the combination
scheme is investigated in Section IV.

The effectiveness of proposed designs are demonstrated in
Section V using LWA1 as an application example. LWA1
operates at frequencies between 10 MHz and 88 MHz using
receivers having noise figure of about 2.7 dB [3]. It is shown
that unequal cable distortion between sensors significantly de-
grades the array SNR performance and the proposed correction
scheme is beneficial in this case. We also confirm that the
combination scheme can improve the array SNR performance
with smaller filter length, as opposed to the concatenation
scheme.

II. DELAY-AND-SUM BEAMFORMING

A delay-and-sum beamformer generates the desired beam
by delaying the signal from each sensor by an appropriate
amount and then summing them together. Typically, the delay
associated with the individual sensor is determined by the
array geometry and the desired pointing direction. Consider
a coordinate system in which the incident direction ψ is
represented as {θ, φ}, where θ is the angle measured from
the +z axis, and φ is the angle measured from the +x axis
toward the +y axis. The delay of the signal incident from ψ
at the nth sensor is

τn(ψ) = −xn sin θ cos φ + yn sin θ sinφ + zn cos θ

c
, (1)

where c is the speed of light in free space, and (xn, yn, zn)
are the coordinates of the nth sensor.

For a given sample period Ts, the time delay D can be
interpreted as

D = dTs + τ , (2)

where dTs is the integer sample period delay (coarse delay)
with d being an integer, and τ is the fractional sample period
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Fig. 1. Concatenation scheme.

Fig. 2. Combination scheme.

delay (fine delay) satisfying 0 ≤ τ/Ts ≤ 1. An implementa-
tion of this scheme for an array consisting of N sensors is
shown in Figure 3, where “first in first out” buffers (FIFOs)
are used to implement the coarse delay, and per-sensor M -tap
FIR filters are used to implement the fine delay. This scheme
minimizes the required length of the delay FIR filter.

From the reconstruction theorem, the ideal impulse response
for the delay filter is then

h[k] = sinc
(

k − τ

Ts

)
, k ∈ (−∞,∞) . (3)

Reducing the limits of k from ±∞ to d±(M − 1)/2e in
order to obtain an implementable filter results in a FIR filter
having M taps. We refer to this as the “prototype truncation”
method. This method is affected by Gibbs phenomenon. The
resulting frequency domain ripple may be undesirable in many
applications (and, in particular, radio spectroscopy).

A simple method to reduce Gibbs phenomenon is by win-
dowing the impulse response. The mainlobe width and side-
lobe level depend on the window function and the associated
parameters. A comprehensive review of window functions was
presented by Harris (1978) [10]. The Kaiser window and the
Chebyshev window are two candidates we consider for delay
FIR filter designs: The Kaiser window allows control of the
peak ripple using one parameter, and the Chebyshev window
minimizes the sidelobe level for a given mainlobe width.

An alternative design method is minimax optimization, in
which one minimizes the maximum error in the frequency
response over the bandwidth of interest. Let Hi(ω) be the
frequency response of the ideal filter. The pseudocode for the
minimax optimization is shown in Algorithm 1.

Fig. 3. Block diagram of delay-and-sum beamforming. Ts is the sample
period.

Algorithm 1
1: Given Hi(ω), ∆M , M0, ε, fs, and Ω

2: h0 ← F−1{Hi(ω)} followed by sampling

3: Truncate h0 to M0 taps

4: Obtain M0-tap h1 using

min

{
max
ω∈Ω

∣∣∣∣∣
M0−1∑

k=0

h1(k)e
−jk ω

fs −Hi(ω)

∣∣∣∣∣

}

5: H1(ω) ← F{h1}
6: if max

ω∈Ω
|∠H1(ω)− ∠Hi(ω)| > 1.0◦ then

7: M0 ← M0 + ∆M , and go to step 4

8: else if max
ω∈Ω

|∠H1(ω)− ∠Hi(ω)| ≤ (1.0◦ − ε) then

9: M0 ← M0 − b∆M/2c, and go to step 4

10: else if (1.0◦ − ε) < max
ω∈Ω

|∠H1(ω)− ∠Hi(ω)| ≤ 1.0◦ then

11: M1 ← M0, h1 is found as M1 taps

12: return

13: end if

In this algorithm, M0 is the initial filter length, ∆M is the
step size for each iteration, ε is the tolerance of the phase
error (0.01◦ is suggested), fs is the sampling frequency, and
Ω is the frequency range of interest.

In this paper, we will focus on the use of windowing and
minimax optimization methods for the design of FIR filters.

III. CABLE LOSS AND DISPERSIVE DELAY

Coaxial cable is a commonly-used type of transmission line,
consisting of inner conductor, insulator, metal layer, outer
conductor, and jacket. The source of distortion in coaxial
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cables is that the center conductor and shield are not perfectly
conductive, so that part of the current travels in the metal
where power can be dissipated and propagation speed is
frequency-dependent [11].

A. Frequency Response of Coaxial Cables

An infinitesimal length of electrical transmission line can
be modeled as a resistance (R in Ω/m) and inductance (L
in H/m) in series, and a capacitance (C in F/m) and con-
ductance (G in S/m) in parallel [11]. If properly terminated
at both ends of the transmission line, the transfer function
from the input voltage (i.e., the voltage at the beginning of
the transmission line) to the output voltage (i.e., the voltage
at distance l) is

H(ω) = e−γl , (4)

where γ =
√

(R + jωL)(G + jωC) is the “propagation con-
stant”. Separating γ into real and imaginary parts γ = α+jβ,
we have

H(ω) = e−αle−jβl , (5)

where the first and second factors describe attenuation and
phase along the transmission line at distance l, respectively.
The delay along the transmission line of length l is then

τ = −d]H(ω)
dω

=
dβ

dω
l , (6)

which depends on cable length (as expected), but also possibly
on frequency.

Ideally, G ¿ ωC and R ¿ ωL , and L and C are
frequency-invariant. Under these conditions, γ is approxi-
mately constant and imaginary-valued. The frequency response
of an ideal coaxial cable is thus

Hic(ω) = e−jω(
√

LC)l , (7)

where the magnitude response is unity and the phase response
is linear. Hence the ideal coaxial cable has no loss and is
dispersionless.

In practice, however, α is non-zero and frequency-
dependent, yielding propagation loss; and β is a non-linear
function of ω, yielding dispersion due to the frequency-
dependent delay indicated in Equation (6). The cable distortion
can thus be defined as

Hc(ω) = H(ω)H−1
ic (ω) = e−αle−j(β−ω

√
LC)l . (8)

A derivation of values for α and β is given in the Appendix.
From Equation (44) in the Appendix, the loss in a coaxial cable
of length l is

A = e−ζl
√

ω , (9)

and from Equations (44) and (6), the dispersive delay (delay
in addition to that implied by the velocity factor) is

τd =
κl

2
√

ω
. (10)

For a given cable, the parameters ζ and κ are constants inde-
pendent of frequency, having units of m−1 Hz−1/2, described
in the Appendix.

B. Correction of Cable Distortion

The frequency response of the ideal correction filter for the
compensation of cable distortion is from Equation (44),

Hcd(ω) = H−1
c (ω) = e(ζ+jκ)l

√
ω . (11)

The impulse response of the correction filter, hcd(t), is the
inverse Fourier transform of Hcd(ω). There is no explicit
closed form of the inverse Fourier transform of Equation (11)
available. To bypass this problem, we expand “eg

√
ω” (where

g = (ζ + jκ)l is a constant independent of frequency) as
a Taylor series to obtain a simpler expression whose inverse
Fourier transform is known. As the frequency response of the
correction filter is not linear in ω, neither the one-term nor the
two-term Taylor series expansion is appropriate in this case.
Using a three-term Taylor series to expand “eg

√
ω” around

some frequency ωc, we obtain

eg
√

ω ∼=
[(

g2

8ωc
− g

8
√

ω3
c

)
ω2 +

(
3g

4
√

ωc
− g2

4

)
ω+

(
g2ωc

8
− 5g

√
ωc

8
+ 1

)]
eg
√

ωc .

(12)

The approximation of Hcd(ω) given in Equation (11) is then

Hcd(ω) ∼= H̃cd(ω) = c0ω
2 + c1ω + c2 , (13)

where

c0 =

[
(ζ + jκ)2l2

8ωc
− (ζ + jκ)l

8
√

ω3
c

]
e(ζ+jκ)l

√
ωc , (14a)

c1 =
[
3(ζ + jκ)l

4
√

ωc
− (ζ + jκ)2l2

4

]
e(ζ+jκ)l

√
ωc , (14b)

c2 =
[
(ζ + jκ)2l2ωc

8
− 5(ζ + jκ)l

√
ωc

8
+ 1

]
e(ζ+jκ)l

√
ωc .

(14c)
The time domain filter h̃cd(t) for the correction of cable

distortion can be obtained by taking the inverse Fourier
transform of Equation (13). If sampled at the rate of fs in
the time domain, the correction filter h̃cd in terms of its taps
k, is:

h̃cd[k] =
j(c∗0π2f2

s + c∗1πfs + c∗2)k2 + (2c∗0πf2
s + c∗1fs)k − 2jc∗0f2

s

2πk3ejπk
−

j(c0π2f2
s + c1πfs + c2)k2 − (2c0πf2

s + c1fs)k − 2jc0f2
s

2πk3e−jπk
+

j(c2 − c∗2)k2 − (c1 + c∗1)fsk − 2j(c0 − c∗0)f2
s

2πk3
.

(15)

C. Example

Kingsignal1 Part Number KSR200DB cables are used in
LWA1. The data sheet indicates that KSR200DB cable has the
following characteristics: inner conductor radius a = 0.56 mm,
outer conductor radius b = 1.83 mm, and C = 80.4 pF/m.
Because the conductivities δa and δb of the inner and outer
conductors, respectively, are not accurately known, we obtain ζ
and κ from measurements [12] using Equation (46). It is found
from measurements that using Equation (38) taking the real

1http://www.kingsignal.com/en
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part of the propagation constant α0 = 0.00428 m−1 at f0 =
10 MHz gives an excellent fit (within 0.1 dB at 150 MHz) to
the 150 MHz, 450 MHz, and 900 MHz loss values provided
in the data sheet. Thus, we have ζ = 5.4×10−7 m−1 Hz−1/2.
Using time-domain reflectometry, the additional dispersive
delay is found to be

τd = (2.4 ns)
(

l

100 m

)(
f

100 MHz

)−1/2

. (16)

From Equation (10), we have κ = 3.8× 10−7 m−1 Hz−1/2 .
We now employ Equation (15) as the correction filter for

a KSR200DB cable of length 150 m. The LWA1 beamformer
operates at 196 million samples per second (MSPS). In the
context of LWA1, the center frequency for the Taylor series
expansion should be chosen to yield minimum frequency re-
sponse error between 10 MHz and 88 MHz. By trying various
frequencies over 10−88 MHz, it is found that fc = 39.42 MHz
works well. To achieve peak phase error no larger than 1.0◦

over 10− 88 MHz, a 140-tap FIR filter is required using the
prototype truncation method.

D. Reduction in the Order of Cable Correction Filter

The number of filter taps obtained using prototype trun-
cation is quite large. Here, three alternative methods are
considered: Kaiser windowing with β = 5.65 prior to trun-
cation, Chebyshev windowing of sidelobe height −60 dB
prior to truncation, and minimax optimization starting from
the prototype of Section III-C. For the minimax optimiza-
tion method described in Algorithm 1, the parameters are
∆M = 5, M0 = 140, ε = 0.01◦, fs = 196 MHz, and
Ω = 2π[10, 88] × 106 rad/s. In each approach, the required
number of filter taps, M , is defined to be the minimum
filter length which achieves phase accuracy of 1.0◦ over
10−88 MHz. The results are shown in Figures 4(a)−4(c). The
results illustrate that windowing techniques yield significantly
less ripple, which is an advantage of that approach. However,
minimax optimization yields a filter with much smaller filter
length.

IV. COMBINATION SCHEME

It may not be practical or desirable to have separate FIR
filters for cable correction and beamforming delay as shown
in Figure 1. Here we consider combing these functions as
shown in Figure 2.

The desired frequency response of the ideal combined filter
is the product of the frequency response of individual filters;
i.e., Hi(ω) = Hb(ω)Hcd(ω) where Hb(ω) is the frequency re-
sponse of the delay FIR filter. The prototype for the combined
filter can be obtained by taking the inverse Fourier transform
of the desired frequency response and then using sampling
and truncation. Then we can perform minimax optimization as
described in Algorithm 1 and demonstrated in Section III-D.

Now we consider a combined filter including the functions
of per-sensor cable correction and delay-and-sum beamform-
ing. The cable correction filter is used to compensate the
distortion in a KSR200DB cable of length 150 m as described
in Section III-C. For a beamforming delay equal to 2.5 ns
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(a) Kaiser window (M = 27).
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(b) Chebyshev window (M = 29).
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(c) Minimax optimization (M = 19).

Fig. 4. Performance of cable correction FIR filters using different design
methods. In each figure, the top panel shows the error of magnitude response
from the ideal, and the bottom panel shows the error of phase response from
the ideal. The dash rectangular box in the bottom panel indicates the 1.0◦
phase error specification over 10− 88 MHz.

at the sample rate of 196 MSPS (i.e., about half period),
the combined filter using the prototype truncation requires
M = 30 to achieve peak phase error no larger than 1.0◦
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over 10 − 88 MHz. Using M0 = 30, ∆M = 2, ε = 0.01◦,
fs = 196 MHz, and Ω = 2π[10, 88]× 106 rad/s, Algorithm 1
yields a 20-tap combined FIR filter, shown in Figure 5.

Since this result is likely dependent on the beamforming
delay, we also consider a combined filter implementing a
beamforming delay of 1.6 ns (i.e., about one third the sam-
ple period). The combined filter using prototype truncation
requires M = 82 to achieve phase errors no larger than 1.0◦

over 10 − 88 MHz. Using M0 = 82, ∆M = 6, ε = 0.01◦,
fs = 196 MHz, and Ω = 2π[10, 88]× 106 rad/s, Algorithm 1
yields a 28-tap combined FIR filter as shown in Figure 6.

V. APPLICATION TO LWA1 BEAMFORMING

In this section, we demonstrate our designs using a simpli-
fied version of LWA1 consisting of N = 256 isotropic sensors
whose properties are identical over 10−88 MHz. The arrange-
ment of these sensors is shown in Figure 7. In the LWA1 cable
system, lengths vary between 43 m and 149 m [12]. Cable
losses and dispersive delays in the LWA1 array are shown in
Figures 8 and 9, respectively, using Equations (9) and (10).
Note that cable losses and dispersive delays are scattered over
a large range, and vary significantly with frequency as well.

A. Calculation of SNR Improvement

System equivalent flux density (SEFD) is a commonly-used
metric of the sensitivity of radio telescopes. SEFD is defined as
the power flux spectral density, having units of W m−2 Hz−1,
which yields SNR equal to unity at the beamformer output. A
method for calculation of SEFD using narrowband beamform-
ing has already been described in [13]. Now we extend this
to delay-and-sum (wideband) beamforming. Consider a delay-
and-sum beamformer consisting of N sensors. Each sensor is
followed by a M -tap delay FIR filter. Following [13],

SEFD =
2
η

wH (Rz + Ru)w
wHRsw

, (17)

where η is impedance of free space, and following Figure 3,

w = [w11 · · · wN1 · · · w1M · · · wNM ]T (18)

is the NM × 1 column vector with the superscript “T ” being
the transpose operation, and Rs, Rz , and Ru are the NM ×
NM covariance matrices associated with signal of interest,
external noise, and internal noise, respectively.

Assuming the signal of interest is unpolarized and is wide-
sense stationary, the desired signal covariance matrix is

Rs = Rθθ
s + Rφφ

s , (19)

where

Rθθ
s =




AθθP
θ
E · · · AθθR

θ
E [M − 1]

...
. . .

...
AθθR

θ
E [M − 1] · · · AθθP

θ
E


 , (20a)

Rφφ
s =




AφφP φ
E · · · AφφRφ

E [M − 1]
...

. . .
...

AφφRφ
E [M − 1] · · · AφφP φ

E


 , (20b)
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Fig. 5. Performance of the 20-tap combined (cable correction + delay) filter.
The combined filter is used to simultaneously implement a delay equal to about
one half sample period as well as compensation for loss and dispersion in a
KSR200DB cable of length 150 m.
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Fig. 6. Performance of the 28-tap combined (cable correction + delay) filter.
The combined filter is used to simultaneously implement a delay equal to about
one third sample period as well as compensation for loss and dispersion in a
KSR200DB cable of length 150 m.
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Fig. 7. Sensor arrangement in the LWA1 array [12]. The minimum distance
between two sensors is 5 m.
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Fig. 8. Losses for all 256 cables.
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Fig. 9. Dispersive delays for all 256 cables.

Aθθ = a∗θ(ψ0)a
T
θ (ψ0) , Aφφ = a∗φ(ψ0)a

T
φ (ψ0) , (20c)

aθ(ψ0) = [aθ
1(ψ0) aθ

2(ψ0) · · · aθ
N (ψ0)]

T , (20d)

aφ(ψ0) = [aφ
1 (ψ0) aφ

2 (ψ0) · · · aφ
N (ψ0)]

T , (20e)

P θ
E and Pφ

E are the powers of the θ- and φ-polarized com-
ponents of the electric field of the signal of interest, Rθ

E [·]
and Rφ

E [·] are the auto-correlation correlation functions of the
desired signal, aθ

n(ψ0) and aφ
n(ψ0) are the effective lengths

associated with the θ and φ polarizations for the nth sensor
for signals incident from ψ0, and the superscript “∗” is the
conjugation operator. For this study, we assume isotropic
sensors (i.e., aθ

n(ψ) = aφ
n(ψ) are constant with respect to

ψ) and we assume pattern multiplication applies; i.e., mutual
coupling is ignored.

The external noise covariance matrix Rz can be partitioned
into M2 N ×N submatrices as follows:

Rz =




Pz · · · PzRz[M − 1]
...

. . .
...

PzRz[M − 1] · · · Pz


 , (21)

where Rz[·] is the auto-correlation function of external noise,

and the (n, n′)th (n, n′ = 1, · · · , N ) element of the N × N
matrix Pz is the correlation of external noise between sensors
n and n′, which is given in [13] as

P
[n,n′]
z =

kη

λ2

∫ 2π

φ=0

∫ π

θ=0

[
aθ

n(ψ)aθ
n′ (ψ) + aφ

n(ψ)aφ
n′ (ψ)

]
Te(ψ) sin θdθdφ .

(22)
Here, k is Boltzmann’s constant (1.38 × 10−23 J/K), λ is
the wavelength, and Te(ψ) is the external noise brightness
temperature in the direction ψ. In this study, we also assume
that Te(ψ) is uniform over the sky (θ ≤ π/2) and zero for
θ > π/2, although in fact Te(ψ) varies considerably both as a
function of ψ and a function of time of day due to the rotation
of the Earth. This assumption provides a reasonable standard
condition for comparing Galactic noise-dominated antenna
systems, as explained in [14] and demonstrated in [15]. Using
this model, Te(ψ) toward sky is found as a function of
frequency; that is,

Te(ψ) =
1
2k

Iv
c2

f2
, (23)

where c is the speed of light in free space, f is frequency, and
Iv is intensity having units of W ·m−2 ·Hz−1 · sr−1 given by

Iv = Igf
−0.52
MHz + Iegf

−0.80
MHz , (24)

where Ig = 2.48 × 10−20, Ieg = 1.06 × 10−20, and fMHz is
frequency in MHz.

The internal noise covariance matrix Ru can also be parti-
tioned into M2 N×N submatrices as

Ru =




Pu · · · PuRu[M − 1]
...

. . .
...

PuRu[M − 1] · · · Pu


 , (25)

where Ru[·] is the auto-correlation function of internal noise,
and Pu is an N×N diagonal matrix whose non-zero elements
are given in [13] as

P[n,n]
u = kTp,nRL . (26)

Here, Tp,n is the input-referred internal noise temperature
associated with the nth sensor. For LWA1, it is reasonable
to assume that all the electronics are identical such that
Tp,n = 250 K. RL is the impedance of load into which the
antenna is terminated; that is, RL = 100 Ω for LWA1. Note
we assume cable loss does not contribute significantly to Tp,n,
which is the case for LWA1.

For a desired pointing direction 22◦ away from the zenith
toward the east (i.e., θ = 22◦ and φ = 0◦), the resulting
SEFD for a single sensor and for the beamforming array can
be computed from Equation (17). The SNR improvement over
that of a single stand by beamforming can thus be expressed
as the ratio of the SEFD for a single stand to the SEFD for
the beamformer.

B. Effect and Correction of Unequal Cable Distortion

Now we use the combination (cable dedispersion + beam-
forming delay) scheme and assess the improvement in SNR
relative to beamforming without cable equalization. The per-
sensor combined filter length is initially selected to be 28,
which is what LWA1 actually has. Figures 10 and 11 show
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Fig. 10. Delay-and-sum beamforming performance in the different cases
described in the text. 28-tap combined FIR filters are applied to each sensor.
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Fig. 11. Same as Figure 10, except now relative to the “ideal” result. 28 taps.

the SNR improvement over that of a single sensor by delay-
and-sum beamforming in three different cases: (1) The ideal
case where the effects of unequal cable distortion are either not
significant or always perfectly compensated; (2) the realistic
case where unequal cable losses and dispersive delays exist
but with no correction implemented; and (3) same as (2)
but now with correction. Note that all schemes experience
severe degradation below 30 MHz; this is due to correlation of
external noise between sensors, as explained in [13]. Also note
that none of the results achieves the often-stated theoretical
limit of SNR improvement equal to N , for the same reason.
The results show that unequal cable losses (Figure 8) and
dispersive delays (Figure 9) introduce an additional SNR
performance penalty of 0.35−0.86 dB if not corrected. Using
the M = 28 per-sensor combined filters, we achieve a benefit
of 0.05− 0.45 dB above 30 MHz. Note that there is a slight
performance penalty (less than 0.05 dB) below 20 MHz, which
is due to the insufficient filter length. For the same reason, the
SNR performance with correction using combined FIR filters
is still 0.10 − 0.40 dB worse than the result in the case of
ideal cables.

We now repeat the analysis using per-sensor combined FIR
filters of different lengths to find the minimum M for which
the SNR improvement by the combined filter is consistently
better at all frequencies. It is found that M = 42 achieves
this objective, as shown in Figure 12. (Note that the “w/o
correction” results change slightly; this is because the length
of the corresponding delay filters have also changed, even
though the same delays are being implemented.) We repeat
the analysis to find the minimum M for which the SNR
degradation using combined filters is within 0.1 dB. Figure 13
shows M = 58 achieves this goal. These results confirm
that the cable equalization scheme of Section III-B effectively
mitigates the degradation in SNR due to unequal cable loss
and dispersion, using filters of reasonable length.

Cable losses are easily equalized by varying the gains of
the analog or digital receivers, which does not require digital
filtering. Thus it is of interest to consider the benefit of
correcting only loss. Here we consider two cases: (1) Perfect
correction for cable losses only, which is equivalent to doing
no correction on cables for which ζ = 0; and (2) correction
for cable losses at a given frequency; i.e., at all frequencies
using the value for 50 MHz only. Figure 14 shows the result
for M = 58. Note that significant improvement is possible
using “loss-only” equalization. However, the performance is
significantly less than that achieved when dispersion is also
corrected. Interestingly, the results in the two cases are very
close around 50 MHz and differences between the results
become only slightly larger when the frequency is away from
50 MHz, which indicates that most of the benefit of “loss-
only” correction can be obtained using “single frequency”
correction.

VI. CONCLUSION

This paper has considered the effect of unequal loss and
dispersion of coaxial cables on delay-and-sum beamforming
arrays. A rigorous description of cable distortion was provided
in Section III-A. A method for correcting and equalizing
the distortion was developed in Sections III-B and III-D. A
scheme for implementation of this method by modification
of the coefficients of the same FIR filters used to implement
beamforming delays (the “combination scheme”) was devel-
oped in Section IV. In Section V we considered considered
the problem in the context of the LWA1 radio telescope, and
demonstrated that significant improvement is possible using
our proposed equalization scheme. For LWA1, we found that
uncorrected loss and dispersion results in SNR degradation be-
tween 0.35 dB and 0.86 dB from that achieved in the absence
of cable distortion. This degradation can be made arbitrarily
small, with the only limitation being filter length. For LWA1,
it was found that 58-tap filters are required to reduce the
degradation to less than 0.10 dB. We also demonstrated that
significant improvement can be achieved by single-frequency
correction of losses only, ignoring dispersion. In the case of
LWA1, this simpler approach limits the degradation to about
0.24 dB.

Although these may seem to be only minor improvements,
these are significant in the context of a large array. For
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Fig. 12. Same as Figure 11, except for 42-tap per-sensor combined filters.
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Fig. 13. Same as Figure 11, except for 58-tap per-sensor combined filters.
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Fig. 14. Same as Figure 13, but now showing effect of “loss-only” corrections.
58 taps.

example, 0.3 dB improvement in SNR can be interpreted as 7%
reduction in the number of antennas required. For LWA1, this
corresponds to 17 fewer antenna pairs. Since a LWA station
costs about US$800, 000 [16] and the cost is approximately
linear in the number of antennas, this amounts to a savings
of about US$53, 000 plus associated installation, power, and
maintenance costs.

In this paper, we ignored antenna dispersion and the
possibility of unequal dispersion between antennas due to
mutual coupling. Further work should consider dispersion by
antennas, which can in principle be corrected using a similar
approach.

Finally, the theory and techniques described in Sections III
and IV are applicable to a variety of systems which also
potentially suffer from unequal cable losses and dispersive
delays, including sonar arrays, HF/VHF band riometers, radar
arrays, and other radio telescopes consisting of large numbers
of low frequency antennas.
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APPENDIX

CHARACTERIZATION OF REALISTIC COAXIAL CABLES

Let a and b be the radii of the inner conductor and the facing
surface of the outer conductor, respectively; σa and σb be
the conductivities of the inner conductor and outer conductor,
respectively; ε be the permittivity of the medium between the
inner and outer conductor; and µ be the permeability of the
medium between the inner and outer conductor. Typically, the
shunt conductance is negligible for well-designed transmission
line. Thus the propagation constant γ can be written as

γ =
√

(R + jωL)(G + jωC) ≈
√

(R + jωL)jωC . (27)

The shunt capacitance per unit length is independent of
frequency and is given in [11] as

C =
2πε

ln(b/a)
. (28)

The series inductance per unit length accounts for two sources
of inductance and is given in [11] as

L = L0 + Ls0 , (29)

where
L0 =

µ

2π
ln

b

a
(30)

is the ideal inductance associated with the magnetic compo-
nent of the field between the conductors, and

Ls0 =
µ1/2

4π3/2

(
σ
−1/2
a

a
+

σ
−1/2
b

b

)
f−1/2 (31)
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is the frequency-dependent inductance associated with the
magnetic component of the field interior to the inner and outer
conductors, due to the imperfect conductivity. The series resis-
tance per unit length arises from the same current associated
with Ls0. For good conductors, the real and imaginary parts
of the wave impedance are equal; thus

R = 2πLs0f . (32)

Applying substitutions in Equation (27), we find

γ = jβ0

√
1 + (1− j)

Ls0

L0
, (33)

where β0 = ω
√

L0C is the wavenumber for an ideal coaxial
cable. Note that any frequency dependence is due to the current
interior to the conductors, which manifests as non-zero R and
frequency-dependent L. The second term under the radical
in Equation (33) is small compared to 1; see the example
demonstrated in [17]. Applying the “small x” approximation√

1 + x ≈ 1 + 1
2x to Equation (33), we obtain

γ ≈ β0
1
2

Ls0

L0
+ jβ0

(
1 +

1
2

Ls0

L0

)
. (34)

The real part of γ is then

α = Re{γ} = β0
1
2

Ls0

L0
, (35)

and the imaginary part of γ is found to be

β = Im{γ} = β0

(
1 +

1
2

Ls0

L0

)
. (36)

After substituting Equations (35) and (36) into Equation (8)
and applying some algebra, the cable distortion is found to be

Hc(ω) = exp
(
−(1 + j)

β0l

2
Ls0

L0

)

= exp

[
(1 + j)

√
ε

8

(
δ
−1/2
a

a
+

δ
−1/2
b

b

)(
ln

b

a

)−1

l
√

ω

]
.

(37)
This is the physical description of the coaxial cable distortion,
which depends only upon the geometry and materials of the
cable.

We can also determine α and β directly from measurements:
From (37), the attenuation in a coaxial cable of length l at
frequency f can be modeled as

A = e−α0l
√

f/f0 , (38)

where α0 is the real part of the propagation constant specified
at frequency f0. The attenuation at any other frequency is
A = e−α̂l, where

α̂ =
α0√
2πf0

√
ω . (39)

Also from Equation (37), the total delay in a cable of length
l at frequency f can be modeled as

τ = t0 + t1
l

l1

(
f

f1

)−1/2

, (40)

where the first term t0 is the propagation delay in a dispersion-

free cable, and the second term is the dispersive (excess) delay.
Here, t1 is the dispersive delay measured at frequency f1 for
length l1. From Equation (6), we have

β̂ =
1
l

∫
τc dω =

ωt0
l

+
t1
√

8πf1

l1

√
ω . (41)

Since β0l = ωt0, we obtain

β̂ = β0 +
t1
√

8πf1

l1

√
ω . (42)

The frequency response of the cable distortion then

Ĥc(ω) = exp
[
−

(
α0√
2πf0

+ j
t1
√

8πf1

l1

)
l
√

ω

]
. (43)

A general expression for the frequency response of the
distortion in a coaxial cable is thus

Hc(ω) = e−(ζ+jκ)l
√

ω , (44)

where ζ and κ are constants, in m−1 Hz−1/2, dependent upon
the physical parameters of the cable. For the case that Hc(ω)
is determined from Equation (37), we have

ζ = κ =
√

ε

8

(
δ
−1/2
a

a
+

δ
−1/2
b

b

)(
ln

b

a

)−1

. (45)

For the case that Hc(ω) is determined from Equation (43), we
have

ζ =
α0√
2πf0

, and κ =
t1
√

8πf1

l1
. (46)

In general, Equation (46) is more useful since perfect fit to
actual cable response is guaranteed at least one frequency and
the only assumption needed is that of f1/2 dependence.
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