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S.W. Ellingson,Senior Member, IEEE

Abstract— A number of new and planned radio telescopes
will consist of large arrays of low-gain antennas operating at
frequencies below 300 MHz. In this frequency regime, Galactic
noise can be a significant or dominant contribution to the total
noise. This, combined with mutual coupling between antennas,
makes it difficult to predict the sensitivity of these instruments.
This paper describes a system model and procedure for esti-
mating the system equivalent flux density (SEFD) – a useful
and meaningful metric of the sensitivity of a radio telescope
– that accounts for these issues. The method is applied to a
LWA-1, the first “station” of the Long Wavelength Array (LWA)
interferometer. LWA-1 consists of 512 bowtie-type antennas
within a 110 × 100 m elliptical footprint, and is designed to
operate between 10 MHz and 88 MHz using receivers having
noise temperature of about 250 K. It is shown that the correlation
of Galactic noise between antennas significantly desensitizes the
array for beam pointings which are not close to the zenith. It
is also shown that considerable improvement is possible using
beamforming coefficients which are designed to optimize signal-
to-noise ratio under these conditions. Mutual coupling is found
to play a significant role, but does not have a consistently
positive or negative influence. In particular, we demonstrate that
pattern multiplication (assuming the behavior of single antennas
embedded in the array is the same as those same antennas by
themselves) does not generate reliable estimates of SEFD.

Index Terms— Antenna Array, Beamforming, Radio Astron-
omy.

I. I NTRODUCTION

A number of new and planned radio telescopes will consist
of large arrays of closely-spaced low-gain antennas operating
at frequencies below 300 MHz. These include LWA [1],
LOFAR [2], MWA [3], and SKA [4]. In this frequency regime,
it is possible to design receivers with noise temperatures
that are much less than the antenna temperatures associated
with the ubiquitous Galactic synchrotron radiation, such that
the resulting total system noise temperature is dominated by
Galactic noise [5]. This is quite different from condition most
often considered, in which it is usually assumed that internal
noise associated with the receivers dominates and does not
scatter into the array, so that the noise associated with different
antennas is uncorrelated; see e.g. [6], [7], [8]. Recent work
on arrays for long-wavelength radio astronomy accounts for
the dominance of external noise, but neglects the effects of
correlation of this noise between antennas [9], [1]. However,
it is known that this correlation is likely to have a significant
effect for these instruments [10], and this issue is further
explored in this paper. In [11], [12], and [13], correlationof
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noise between antennas is considered, but the source of noise
is internal (amplifiers or ohmic losses in antennas) and the
correlation arises due to propagation internal to the array. The
problem of correlation of external noise has been intermittently
been considered in communications (e.g. [14]) and direction
finding (e.g. [15]) applications, but does not seem to have been
previously considered for long-wavelength radio astronomy
beamforming applications.

Because antenna spacing in the systems of interest is typi-
cally less than a few wavelengths, mutual coupling also plays
a significant role. Since these arrays are electromagnetically
large, interact with the electromagnetically-complex ground,
and may have aperiodic spacings, it is difficult to determinethe
characteristics of antennas, either individually or collectively
as part of a beamforming system. In particular, it is usually
difficult to know if pattern multiplication – that is, assuming
that the behavior of single antennas embedded in the array is
the same as those same antennas by themselves – yields rea-
sonable results. Past studies have shown that mutual coupling
in aperiodic arrays of low-gain elements results in fluctuation
of beam gain and sidelobe levels as a function of scan
angle when element spacing is less than a few wavelengths
[16], [17]. This suggests that pattern multiplication may not
be a useful assumption. However, useful and generalizable
findings which are applicable to the systems of interest are
not commonly available.

This paper describes a procedure for estimating the sen-
sitivity of radio telescope arrays which is appropriate under
these conditions. The procedure is based on a system model,
described in Section II, which relates the electromagnetic
response of the array (thearray manifold), a model for the
external noise temperature, and a model for the receiver noise
temperatures to the system equivalent flux density (SEFD)
achieved by a beam formed using specified beamforming
coefficients. SEFD is defined as the power flux spectral density
(e.g., W m−2 Hz−1) which yields signal-to-noise ratio (SNR)
equal to unity at the beamformer output. SEFD is a useful
metric as it includes the combined effect of antennas and
all noise sources into a single “bottom line” number that is
directly related to the sensitivity of astronomical observations.

The primary difficulty in applying determining SEFD using
the above procedure is obtaining the array manifold. One
approach is demonstrated by example in Section III of this
paper. We analyze LWA-1, the first “station” of the Long
Wavelength Array (LWA) interferometer [1]. LWA-1 consists
of 512 bowtie-type antenna elements arranged into 256 dual-
polarized “stands” within a 110× 100 m elliptical footprint.
LWA-1 is designed to operate between 10 MHz and 88 MHz
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using receivers having noise temperature of about 250 K. We
obtain the array manifold for LWA-1 at 20 MHz, 38 MHz,
and 74 MHz using a method of moments (MoM) wire-grid
model. Because the model is too large to analyze all at once
(a common problem with this class of arrays), a procedure
described in Section III-B is employed in which the manifold
is calculated for one stand (i.e., one pair of collocated antenna
elements) at time. Unlike pattern multiplication in which
the presence of the remaining stands would be ignored, this
procedure obtains the response of each antenna in presence of
nearby antennas and structures.

Also considered in this paper is the selection and perfor-
mance of beamforming coefficients which optimize SEFD.
Because mutual coupling and external noise correlation are
significant, it is to be expected that “simple” beamforming co-
efficients based solely on antenna positions (i.e., phases asso-
ciated with geometry only) will not be optimal. In Section IV,
the SEFD performance of LWA-1 is evaluated. It is shown
that the optimal coefficients significantly improve sensitivity
relative to simple coefficients. Finally, in Section V, the ex-
tension of these results to predict the imaging performanceof
an interferometer comprised of multiple beamforming arrays
is considered.

II. T HEORY

Let Eθ(t) andEφ(t) be theθ- andφ-polarized components
of the electric field of the signal of interest, having units
V m−1 Hz−1/2. In this coordinate system,θ is measured from
the +z axis, which points toward the zenith; the ground lies
in the z = 0 plane, andφ is measured from the+x axis. The
signal of interest is incident from{θ0, φ0}, which is henceforth
indicated asψ0. The resulting voltage across the terminals of
the nth antenna element, having units of V Hz−1/2, is

xn(t) = aθn(ψ0)Eθ(t) + aφn(ψ0)Eφ(t) + zn(t) + un(t) (1)

where: aθ(ψ0) and aφ(ψ0) are the effective lengths, having
units of meters, associated with theθ and φ polarizations,
respectively, for thenth antenna element for signals incident
from ψ0; zn(t) is the contribution from noiseexternal to
the system; andun(t) is the contribution from noiseinternal
to the system. Noteun(t) can also include internal noise
unintentionally radiated by some other antenna and received
by antennan. In all cases, we assume these quantities are
those which apply when antennas are terminated into whatever
electronics are actually employed in the system, as opposed
to being “open circuit” or “short circuit” quantities. Without
loss of generality we can interpret these to be time-harmonic
(i.e., monochromatic complex-valued “baseband”) quantities.

Beamforming can be described as the operation:

y(t) =

N
∑

n=1

bnxn(t) (2)

whereN is the number of antennas, and the unitlessbn’s
specify the beam. Assuming root-mean-square voltages, the
power at the output of the beamformer is

Py = 〈y(t)y∗(t)〉R−1
o (3)

where< · > denotes time-domain averaging and “∗” denotes
conjugation, andRo is the impedance looking into the system
as seen from the terminals across whichy(t) is measured,
assumed to be purely resistive.

We now wish to evaluate Equation 3 by substitution of
Equation 2. In the process of expanding Equation 3, let
us assume that the signal of interest,zn(t), and un(t) are
mutually uncorrelated for any givenn. Specifically, we assume
that for anyn andm:

〈Eθ(t)z
∗

n(t)〉 = 〈Eφ(t)z
∗

n(t)〉 = 0 (4)

〈Eθ(t)u
∗

n(t)〉 = 〈Eφ(t)u
∗

n(t)〉 = 0 (5)

〈zn(t)u
∗

m(t)〉 = 0 . (6)

Note that the possibility that like terms are correlated between
antennas is not precluded by the above assumptions; for
example,〈zn(t)z∗m(t)〉 can be6= 0 for n 6= m. Furthermore,
we have not yet made any assumption about the correlation be-
tweenEθ(t) andEφ(t). Under these assumptions, Equation 3
can be written as follows:

PyRo = b
H
Aθθb Pθθ + b

H
Aφφb Pφφ

+ b
H
Aθφb Pθφ + b

H
Aφθb Pφθ

+ b
H
Pzb + b

H
Pub , (7)

where “H ” denotes the conjugate transpose operator;

b = [ b1 b2 · · · bN ]
T , (8)

where “T ” denotes the transpose operator; and

Aθθ = a
∗

θ(ψ0) a
T
θ (ψ0) Pθθ =

〈

|Eθ(t)|
2
〉

(9)

Aφφ = a
∗

φ(ψ0) a
T
φ (ψ0) Pφφ =

〈

|Eφ(t)|
2
〉

(10)

Aθφ = a
∗

φ(ψ0) a
T
θ (ψ0) Pθφ =

〈

Eθ(t)E
∗

φ(t)
〉

(11)

Aφθ = a
∗

θ(ψ0) a
T
φ (ψ0) Pφθ = 〈Eφ(t)E

∗

θ (t)〉 (12)

aθ(ψ0) =
[

aθ1(ψ0) a
θ
2(ψ0) · · · aθN (ψ0)

]T
(13)

aφ(ψ0) =
[

aφ1 (ψ0) a
φ
2 (ψ0) · · · aφN (ψ0)

]T

; (14)

andPz is a matrix whose(n,m)th element is〈z∗n(t)zm(t)〉,
andPu is a matrix whose(n,m)th element is〈u∗n(t)um(t)〉.1

We now consider the external noise correlation matrixPz.
We wish to obtain a simple expression forP

[n,m]
z , the(n,m)

th

element ofPz, in terms of physical quantities more relevant to
radio astronomy. First, let us define∆S(ψ) as the flux density,
having units of W m−2 Hz−1, associated with the electric field
∆E(ψ, t) incident from a region of solid angle∆Ω around
ψ. Assuming∆E(ψ, t) is given in terms of root-mean-square
voltage, the relationship is

∆S(ψ) =
〈

|∆E(ψ, t)|
2
〉

/η (15)

where η is impedance of free space. Since the Galactic
synchrotron background noise is essentially unpolarized,we

1Following the convention that first index indicates row and the second
index indicates column.
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assume the powers in theθ- andφ-polarized components of
∆E(ψ, t) are equal; specifically,

〈

|∆Eθ(ψ, t)|
2
〉

=
〈

|∆Eφ(ψ, t)|
2
〉

=
η

2
∆S(ψ) (16)

Note also that∆S(ψ) can be obtained independently from the
Rayleigh-Jeans Law:

∆S(ψ) =
2k

λ2
Te(ψ)∆Ω (17)

wherek is Boltzmann’s constant (1.38×10−23 J/K), Te(ψ) is
the apparent external noise brightness temperature (attributable
to either Galactic noise or thermal radiation from the ground)
in the direction ψ, and λ is wavelength. We can model
∆Eθ(ψ, t) and∆Eφ(ψ, t) as follows:

∆Eθ(ψ, t) = gθ(ψ, t)

√

kη

λ2
Te(ψ)∆Ω (18)

∆Eφ(ψ, t) = gφ(ψ, t)

√

kη

λ2
Te(ψ)∆Ω (19)

wheregθ(ψ, t) and gφ(ψ, t) are Gaussian-distributed random
variables with zero mean and unit variance. Note that we
expect not only thatgθ(ψ, t) andgφ(ψ, t) will be independent
random variables, but also thatgθ(ψ1, t) and gθ(ψ2, t) will
be uncorrelated forψ1 6= ψ2, and similarly forgφ(ψ, t). We
obtainzn(t) by summing up the contributions received over a
sphere:2

zn(t) =
∑

ψ

[

aθn(ψ)∆Eθ(ψ, t) + aφn(ψ)∆Eφ(ψ, t)
]

(20)

Applying the definition ofPz and exploiting the statistical
properties ofgθ(ψ, t) andgφ(ψ, t), we find:

P
[n,m]
z =

kη

λ2

∑

ψ

[

aθ∗n (ψ)aθm(ψ) + aφ∗n (ψ)aφm(ψ)
]

Te(ψ)∆Ω

(21)
which can now be written in integral form:

P
[n,m]
z =

kη

λ2

∫

[

aθ∗n (ψ)aθm(ψ) + aφ∗n (ψ)aφm(ψ)
]

Te(ψ)dΩ

(22)
Returning to Equation 7, note that the signal to noise ratio

(SNR) at the output of the beamformer can be written as:

SNR=
b
H
Rsb

bHRnb
, (23)

where

Rs = AθθPθθ + AφφPφφ + AθφPθφ + AφθPφθ , and (24)

Rn = Pz + Pu . (25)

In general, the maximum possible SNR is equal to the
maximum eigenvalue ofR−1

n Rs, and is achieved by selecting
b to be the corresponding eigenvector [18] (see also [6]).
Alternative approaches to beamforming include (1) selecting
b = a

∗

θ(ψ0) or a
∗

φ(ψ0), which accounts for mutual coupling
but neglects spatial noise correlation; or (2) selecting the beam-
forming coefficients to compensate only for the geometrical

2Writing this as a discrete sum as opposed to an integral yieldsa general
result while avoiding the complication of fractional calculus.

delays, which neglects both effects. Approach (1) is optimal
when the noise associated with each antenna is uncorrelated,
such thatRn has the formσ2

nI; i.e., some constant times
the identity matrix. Then, we obtain the well-known result
that the SNR improves linearly withN . However, as will
be demonstrated in later in this paper, this special case is
not necessarily relevant to the problem of interest. This is
primarily due to the impact of the external noise correlation,
as represented byPz, for which off-diagonal terms can be
significant.

For a signal of interest which is unpolarized – a useful
and common assumption for the purpose of characterizing the
sensitivity of a radio telescope – we havePθφ = Pφθ = 0
andPθθ = Pφφ = ηS(ψ)/2, whereS(ψ) is the flux (distinct
from the external noise considered above) associated with the
signal of interest. In this case, we have

Rs = S(ψ)
η

2
(Aθθ + Aφφ) . (26)

Continuing with this assumption, it is convenient to express
the sensitivity of a radio telescope in terms ofsystem equiv-
alent flux density(SEFD), defined as the value ofS(ψ) in
Equation 26 required to double the total power observed at
the beamformer output; i.e., SNR=1. Thus,

SEFD=
2

η

b
H (Pz + Pu)b

bH (Aθθ + Aφφ)b
. (27)

This expression is useful as it describes the sensitivity ofa
radio telescope array in terms the array manifold, the contri-
butions of internal and external noise, and the beamforming
coefficients. The principal difficulty in using this expression
is calculating the array manifold. This is considered next.

III. LWA-1 D ESIGN AND ARRAY MANIFOLD

The original motivation behind the work presented in this
paper was to characterize the performance of LWA-1. LWA-1
consists ofN = 512 antennas arranged into 256 “stands”, with
each stand consisting of two orthogonally-aligned bowtie-type
dipoles over a wire mesh ground screen, as shown in Figure 1.
In Sections III-A and III-B we review the relevant details of
the design of the LWA-1 array, our method for computing the
array manifold and the internal and external noise covariance
matrices, and present some results.

A. LWA Stand Design & Electromagnetic Model

As the dipoles and ground screen comprising each stand
consist of interconnected metal segments, the array is well-
suited to wire grid modeling using the Method of Moments
(MoM). In this study, we employ the NEC-4.1 implementation
of MoM [19].

The dimensions and parameters used to model the dipole
are illustrated in Figure 2. The wire grid models representing
each of the two antennas in a stand are vertically separated
by three times the wire radius to prevent the feeds from
intersecting. The mean height of the highest points on each
dipole (also the segment containing the feed) is 1.5 m above
ground. It is known from both simulations and experiment
that neither the center mast nor the structure supporting the



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. X, NO. X, MONTH YYYY 4

Fig. 1. LWA-1 under construction (picture taken November 2009), showing
a few of the completed stands.

Fig. 2. Geometry of wire grid used to model the dipole. Dimensions are
in meters. Number of segments used in the MoM model are indicated next
to each wire. The radius of all wires is 1.2 cm, modeling aluminumtubing
having square cross-section with 3/4-in sides. The dipole arms are bent45◦

downward from the junction with the center (feed) wire.

dipole arms (see Figure 1) have a significant effect on the
relevant properties of the dipoles, and therefore no attempt is
made to model them. The ground screen is modeled using a
3 m × 3 m wire grid with spacing 10 cm× 10 cm and wire
radius of 1 mm, which is very close to the actual dimensions.
The modeled ground screen is located 1 cm above ground
to account for the significant but irregular gap that exists
because of ground roughness.3 The ground itself is modeled as
an infinite homogeneous half-space with relative permittivity
of 3 and conductivity of 100µS, which is appropriate for
“very dry ground” [20] which predominates in New Mexico,
where LWA-1 is located. (It should be noted that we suspect
that the ground permittivity at the LWA-1 site is significantly
higher; this is addressed below.) Each dipole is connected to a
“active balun” which presents a balanced input impedance of
RL = 100 Ω. For additional information on this design, the
reader is referred to [1] and the references therein.

It will be useful later in this paper to know the performance
of a single stand, neglecting the rest of the array. We begin

3Experiments with this model show that the results are not sensitive to the
separation between ground screen and ground.

with the array manifold for the stand, which is determined as
follows. The stand is illuminated with aθ-polarized 1 V/m
plane wave incident from some directionψ, and the resulting
current IL across the series resistance modeling each active
balun is determined using MoM. Each element of theN =
2 array response vectoraθ(ψ) is then simplyILRL for the
associated antenna.4 The process is repeated for aφ-polarized
plane wave and iterated overψ.

The external noise covariance matrixPz is computed using
a model proposed in [5] which assumes that Galactic noise
dominates over thermal noise from the ground and other
natural or anthropogenic sources of noise. Specifically,Te(ψ)
is assumed to be uniform over the sky (θ < π/2), and zero
for θ > π/2. In practice,Te(ψ) varies considerably both as
a function ofψ and as a function of time of day, due to the
rotation of the Earth. However, the above assumption provides
a reasonable standard condition for comparing Galactic noise-
dominated antenna systems, as explained in [5] and demon-
strated [21] and [22]. Using this model,Te(ψ) toward the sky
is found to be 50,444 K, 9751 K, and 1777 K at 20 MHz,
38 MHz, and 74 MHz, respectively. The actual contributions to
the system temperature are less due to the mismatch between
the antenna self-impedance andRL, but this is automatically
taken into account as a consequence of our definition of the
array manifold, which includes the loss due to impedance
mismatch as well as ground loss. Under these assumptions,
Pz is computed using Equation 22.

The internal noise covariance matrixPu is computed as-
suming that the internal noise associated with any given
antenna is not significantly correlated with the internal noise
associated with any other antenna, so thatPu becomes a
diagonal matrix whose non-zero elements are:

P
[n]
u = kTp,nRL (28)

where Tp,n is the input-referred internal noise temperature
associated with thenth antenna. We will further assume that
all the electronics are identical such thatTp,n = Tp, whereTp
is assumed to be250 K, the nominal value of the cascade noise
temperature of all electronics attached to a dipole, referred to
the dipole terminals.

The ratioTr {Pz} /Tr {Pu} (where “Tr” denotes the trace
operation; i.e., the sum of the diagonal elements) is the degree
to which Galactic noise dominates over internal noise in the
combined output, and is found to be−2.6 dB, +11.1 dB, and
+4.1 dB at 20, 38, and 74 MHz, respectively. The 38 MHz
and 74 MHz results are consistent with field measurements
(see Figure 6 of [1]), however the same measurements sug-
gest 20 MHz should also be Galactic noise-dominated. The
apparent reason for the discrepancy is that the 20 MHz result
is relatively sensitive to ground permittivity, both because the
loss associated with Earth ground increases with decreasing
frequency, and also because the ground screen becomes tiny
(only 0.2λ × 0.2λ) at 20 MHz. Larger assumed permittivity
in our calculations results in Galactic noise-dominated perfor-
mance at 20 MHz, even if the loss tangent is also increased.
The effect of the change of ground parameters on the 38 MHz

4N=2 because we analyze both dipoles in a stand simultaneously.
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Fig. 3. SEFD estimates for a single LWA-1 stand (alone; the rest of the
array is not present) in theφ = 0 half-plane. Note that lower SEFD is better
(more sensitive).

and 74 MHz results is very small in comparison. We shall
continue to use the original ground parameters in this paper
as they can be considered to be safely conservative.

Using the array manifold and the noise covariance matrices
calculated as described above, the resulting SEFD for a single
stand (and neglecting the rest of the array) can be computed
from Equation 27. The result for theφ = 0 plane is shown
in Figure 3. Note Figure 3 is also essentially a pattern
measurement; as such the expected “cos θ”-type behavior is
evident; in particular, the response is seen to go to zero
at the horizon, as expected. Note that the performance at
38 MHz and 74 MHz is similar despite the large difference
in frequency; this is because both the Galactic noise and the
effective aperture of the antennas decrease with frequency
at approximately the same rate [1]. The calculated 20 MHz
performance is somewhat worse for the reasons described in
the previous paragraph.

The stand performance can also be described in the tradi-
tional way, in terms of gain, through the effective aperture
Ae. Let the power delivered to the load (RL) be PL. Note
PL = S(ψ)Ae(ψ) (assuming a co-polarized incident field),
and alsoPL = |IL|

2
RL. SinceS(ψ) =

∣

∣Ei(ψ)
∣

∣

2
/η, where

Ei(ψ) is the co-polarized incident electric field, we have that
the effective aperture for any given antenna attached to a load
RL is

Ae(ψ) = η
|IL|

2

|Ei(ψ)|
2RL . (29)

Assuming thatIL is computed using the MoM model de-
scribed above, this definitionincludes impedance mismatch
as well as loss due to the conductivity of the ground.5

Using Equation 29, the zenith value ofAe is estimated to
be 0.25 m2, 8.72 m2, and 2.48 m2 for 20 MHz, 38 MHz,
and 74 MHz, respectively for each dipole in the single-
stand system described in this section. It should be noted,

5These factors can be computed independently and removed, if desired; see
[5] and [21].

however, that these values cannot be used directly to calculate
a “Ae/Tsys” type sensitivity metric, sinceTsys in this case
would be Te, reduced by the impedance mismatch, plus
Tp; and the mismatch efficiency is not available as part of
this analysis. This underscores the usefulness of SEFD as a
sensitivity metric for this class of systems, in contrast toAe
(or antenna gain) orAe/Tsys.

B. Computation of the LWA-1 Array Manifold

The arrangement of stands in the LWA-1 array is as shown
in Figure 4. We now consider the problem of modeling this
array so as to obtain the array manifold. In principle this is
simply a matter of adding 255 identical stands to the model
described in the previous section, and repeating the MoM
analysis. In practice, however, this leads to an intractably large
model with prohibitively large computational burden. Whereas
the single stand model (including the ground screen) uses
2074 segments, the complete array so modeled would require
530,944 segments, which is well beyond the capability of
commonly-available computing hardware. A more reasonable
target is a model with about 11,000 segments, which fits in
4 GB of RAM and takes 1-2 hours to run on a recent-vintage
workstation-class computer.

In this study, the number of segments used to model the
array at 38 MHz and 74 MHz is reduced by performing the
MoM analysis for one stand at a time, using the following
procedure: (1) The present stand of interest is modeled as
described in the previous section; (2) The dipoles for the
remaining 255 stands are modeled using a simpler “surrogate”
dipole, described below; and (3) The ground screens for the
19 stands closest to the stand of interest are modeled using a
surrogate (sparser) wire grid, also described below, and ground
screens are not included for the remaining 237 stands, under
the assumption that they do not have a significant effect. This
model requires slightly fewer than 11,000 segments, and is run
256 times (once for each stand) to complete the analysis of
the array at one frequency. Analysis at one frequency requires
approximately 1 month of continuous computation using a
cluster of 4 computers. The approach used for 20 MHz is
the same in all respects, except a coarser grid is used for
the surrogate ground screens, which allows the number of
surrogate ground screens to be increased to 108.

The surrogate dipole model replaces each triangular wire
grid dipole “arm” with a single thick wire of length 1.7235 m
with radius 6 cm, which is divided into 3 segments. This
results in segment lengths of0.038λ, 0.073λ, and 0.142λ
at 20 MHz, 38 MHz, and 74 MHz, respectively. This model
yields nearly the same impedance vs. frequency around res-
onance as the original bowtie dipole. The surrogate ground
screen model increases the grid spacing to 75 cm for 20 MHz,
and 30 cm for 38 MHz and 74 MHz. These grid spacings
correspond to0.05λ, 0.038λ, and0.074λ at 20 MHz, 38 MHz,
and 74 MHz, respectively. The wire radius is increased to
5 mm to compensate for the increased grid spacing while keep-
ing the wire cross-section well clear of the Earth ground. The
required number of surrogate ground screens was determined
using an experiment in which the embedded pattern of the
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stand of interest was observed as the number of surrogate
ground screens used in surrounding stands was increased,
starting with the closest stand and working outward. It was
found that ground screens within about1.5λ were often
important, whereas ground screens for stands further away
had negligible effect. To be conservative, 19 surrogate ground
screens were used for the 38 MHz and 74 MHz results,
whereas 108 surrogate ground screens were used for the
20 MHz results; in each case this yields a MoM model with
slightly fewer than the “maximum manageable” number of
segments (11,000) identified above.

MoM analysis reveals that the behavior of stands in the
array is considerably different from stands in isolation. This
is demonstrated in Figures 5–7, which shows the patterns of
all 256 North-South aligned antennas in theφ = 0 plane at
frequencies of 20 MHz, 38 MHz, and 74 MHz, respectively.
It is clear that the combination of non-uniform spacings and
mutual coupling leads to disorderly embedded patterns. At
20 MHz and 38 MHz, the the pattern tends to increase slightly
toward the zenith, and decrease slightly more toward the
horizon. At 74 MHz this trend is not as pronounced, but the
pattern tends to be greater for20◦ ≤ θ ≤ 60◦.

IV. SEFD PERFORMANCE OF THELWA1 A RRAY

Using the currents obtained as described in Section III-B, it
is possible to calculate the SEFD as defined in Equation 27.
Figure 8 shows results in theφ = 0 plane. For each frequency,
results are shown for two beamforming schemes: (1) “simple”
beamforming, in which the coefficients (b) are determined by
geometrical delays (and no other considerations); and (2) “op-
timal” (maximum SNR) beamforming, in whichb is chosen
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Fig. 5. Ae(ψ) for all 256 North-South aligned antennas in theφ = 0 plane
at 20 MHz, relative to the same value for a single stand in isolation. Note this
is essentially a measurement of the effect of mutual coupling onthe antenna
gain.
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Fig. 6. Same as Figure 5, except for 38 MHz.
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Fig. 7. Same as Figure 5 and 6, except for 74 MHz.
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Fig. 8. Calculated SEFD of LWA-1 for beam pointing in theφ = 0 plane. For
each frequency, the upper (dotted) curve is the result for simple beamforming,
and the lower (solid) curve is the result for optimal beamforming.

to be the eigenvector associated with the largest eigenvalue of
Rn

−1
Rs (as discussed in Section II). As expected, optimal

beamforming consistently outperforms simple beamforming,
with the typical improvement being in the range 1–2 dB.

If the principle of pattern multiplication applies, then we
would expect the Figure 8 to be identical to the Figure 3
result (for the single stand in isolation), scaled by the number
of stands (256). However, this is not the case, as is shown
in Figure 9. The SEFD is greater (i.e., worse) than the result
predicted by pattern multiplication by about 1–6 dB (varying
with frequency andθ) for θ greater than about20◦, and is
different (not consistently better or worse) forθ less than
about 20◦. Two possible culprits are mutual coupling and
Galactic noise correlation. From Section III-B it is clear that
mutual coupling is significant. However, the primary culprit
is Galactic noise correlation, as demonstrated in Figure 10.
This figure shows a recalculation of the Figure 9 result with
P

[n,m]
z set to zero forn 6= m; i.e., forcing the correlation of

the external noise received by different antennas to be zero.
This yields a result which is relatively close to that predicted
by pattern multiplication; thus correlation of external noise
between antennas is primarily responsible for the reduced
sensitivity.

Given the large effect mutual coupling is seen to have on
individual antennas patterns, it is interesting that the results
of simple beamforming should be so close to the pattern
multiplication results. Also interesting is the finding that
optimum beamforming still provides a benefit of about 1 dB
at all frequencies for20◦ < θ < 75◦, even with external
noise correlation “turned off”. Mutual coupling is, in this
sense, beneficial; although optimum beamforming coefficients
are required to realize the benefit.

Further insight can be gained from Figures 11–13, which
show that Galactic noise correlation is quite large for closely-
spaced stands, and in many cases is large even for antennas
on opposite sides of the array. Thus, it is not surprising that
sensitivity tends to be degraded relative to a similar calculation
in which external noise correlation is assumed to be zero.

-2

0

2

4

6

0 10 20 30 40 50 60 70 80 90

S
E
F
D
 [
 d
B
 r
e
la
ti
v
e
 t
o
 p
a
tt
e
rn
 m

u
lt
ip
lic
a
ti
o
n
 ]

θ [deg]

20 MHz

38 MHz

74 MHz

Fig. 9. The result from Figure 8 divided by the result expected from pattern
multiplication (i.e., the SEFD from Figure 3, divided by 256).
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Fig. 10. Same as Figure 9, except computed with external (Galactic) noise
correlation “turned off” (see text). Forθ < 75◦, the results for 20 MHz,
38 MHz, and 74 MHz are very close.

It is interesting to note that the correlation exhibits a Bessel
function-like trend as a function of separation in wavelengths.
However, it should be emphasized that this result assumes
uniform sky brightness, and (as pointed out earlier) the actual
situation is somewhat different. Non-uniform sky brightness
will introduce structure in the external noise covariance ma-
trix (Pz) that is likely to cause correspondingψ-dependent
variations in SEFD.

V. CONCLUSIONS

This paper has considered the sensitivity of large arrays
of low-gain antenna elements at low frequencies for which
Galactic noise can be an important or dominant part of the
system temperature. General expressions were developed for
SNR (Equation 23) and SEFD (Equation 27) for beamforming
in terms of the array manifold and internal and external
covariance matrices. Some results are shown using LWA-1 at
20 MHz, 38 MHz, and 74 MHz as an application example. It
shown that for beams pointing more than10◦–20◦ away from
the zenith, the combination of mutual coupling and correlation
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Fig. 11. The magnitude of the sky noise correlationP
[n,m]
z at 20 MHz as

a function of separation between standsn andm, shown as a scatter plot
where each point corresponds to one pair of stands. The results have been
normalized so that the maximum value (i.e., forn = m) assuming pattern
multiplication is unity (1). Note the minimum spacing between the masts of
any two stands is 5 m; thus no points exist for spacings greaterthan zero and
less than 5 m.
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Fig. 12. Same as Figure 11, except at 38 MHz.
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Fig. 13. Same as Figure 11 and 12, except at 74 MHz.

of Galactic noise between antennas results in sensitivity which
is significantly worse than predicted by pattern multiplication
beginning with single antennas in isolation. Closer to the
zenith, the result is frequency-dependent, and can be better
or worse than the result predicted by pattern multiplication.
It is also shown that improvement of 1–2 dB is possible
by using beamforming coefficients specifically designed to
maximize SNR, as opposed to coefficients derived solely from
geometrical phase and which therefore neglect external noise
correlation as well as mutual coupling.

The ultimate intended use of LWA-1 is not solely as a
stand-alone instrument, but rather as one of 53 identical
“stations” distributed over the State of New Mexico which are
combined to form images using aperture synthesis techniques
[1]. Because the minimum separation between stations will
be on the order of kilometers, the effects of mutual coupling
and spatial correlation of Galactic noise will be negligible
in the process of combining station beams into an image.
Thus, the SEFD for imaging will be better by a factor of
√

NS(NS − 1) than the SEFD for the station beam, where
NS is the number of stations. Adopting a value of 3200 Jy for
the typical zenith-pointing SEFD from Figure 8, the SEFD
for imaging near the zenith withNS = 53 is expected to
be about 61 Jy. The resulting near-zenith image sensitivity,
assuming 1 h integration, 8 MHz bandwidth, and SNR= 5,
is about 2 mJy. This is consistent with the result derived
in [1], which neglected Galactic noise correlation. However
results for imaging at larger zenith angles will not be consistent
with [1], for the reasons discussed above. Better estimatesfor
pointing directions in theφ = 0 plane can be obtained starting
with Figure 8.

Finally, it should be noted that the theory and techniques
described in Section II are generally applicable; even to arrays
employing regular spacings, with or without mutual coupling,
and dominated or not by external noise. Other findings in
this paper may be specifically relevant for arrays used in
other radio science applications, including HF/VHF direction
finding arrays, radar arrays for measuring the atmosphere or
ionosphere, and riometers.
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