
LWA DRX C Language Simulation Report - v0.1

Johnathan York (ARL:UT)

February 1, 2008

1 Introduction

This document contains a short report on the Long Wavelength Array
(LWA) Digital Receiver (DRX) C simulator and support files. For con-
text, please see the DRX design document contained in [3], and the LWA
Station Architecture document [1]. The goal of this simulator is to mimic in
software the operation of the DRX hardware. This simulator has a variety
of intended uses, including:

• early validation of the digital signal processing algorithms used in the
DRX,

• separation of algorithm development from register transfer language
(RTL) implementation issues,

• promoting early interoperability testing, specifically with the DAC and
other downstream components, and

• promoting more extensive testing by running at 1,000X slower than
realtime, rather than 1,000,000X typical for RTL simulations of this
size.

In effect, the C simulation complements high-level design documenta-
tion by providing a ”bit-accurate, functional interface control document”
between the externally visible performance requirements and the RTL de-
velopment of the DRX. That is, potential end-users of the DRX are able
to experimentally validate that the DRX design will meet their needs using
the C simulation, while RTL designers can validate their implementations
at the bit-level against the output of the C simulation.

1

Figure 1: Block diagram of the DRX DSP components

2

2 Design

Figure 1 is a block diagram of the digital signal processing (DSP) compo-
nents of the DRX. The design of the simulator closely mimics the intended
hardware layout, in that separate C source files contain the logic for each
module. In all there are 5 modules implementing Digital Signal Processing
algorithms. These include

• tuner.hpp - Implements a fixed-point lookup table (LUT) based, complex-
valued heterodyning mixer

• cic.hpp - Implements a Cascaded Integrating Comb (CIC) [4] decimat-
ing filter

• fir.hpp - Implements a fixed-point Finite Impulse Response (FIR) filter

• pfb fir.hpp - Implements a fixed-point Finite Impulse Response (FIR)
filterbank suitable for polyphase filterbank (PFB) implementation

• fft.hpp - Implements a fixed-point Fast Fourier Transform (FFT)

Although this document is titled as a ”C language” simulation, a ”C++
language” simulation is perhaps more accurate. The simulator components,
as currently written, make heavy use of C++ templates to facilitate ex-
perimentation with varying bit-depths, fixed/floating-point arithmetic, and
complex/real valued signals. The file sample.hpp provides a templated com-
plex sample type used throughout the simulator. The file inttraits.hpp con-
tains trait classes used to appropriately size accumulators, and result values
based upon the input data types specified via template parameters. The
heavy use of templates allows the compiler to perform substantial compile-
time optimizations while preserving the data-type and data-flow agnostic
characteristics of the simulator components themselves.

3 Interface

While the simulator components are modularized C++ classes, the user-
visible interface is provided through 5 executable files, each one testing a
specific subset of the DRX components:

• ddc testbench - Tests the tuner, CIC, and fir components. Accepts
16-bit I&Q time-domain samples, outputs 16-bit I&Q time-domain
samples.

3

• pfbfir testbench - Tests Polyphase FIR. Accepts 16-bit I&Q time-domain
samples, outputs filtered 16-bit I&Q time-domain (but polyphase)
samples.

• fft testbench - Tests the FFT module. Accepts 4096 32-bit I&Q time-
domain samples, outputs 4096 32-bit I&Q frequency-domain samples.

• pfb testbench - Test the Polyhase FIR and FFT modules. Accepts 16-
bit I&Q time-domain samples, outputs 4096 interleaved 32-bit I&Q
frequency channels.

• drx testbench - Tests the entire DRX module. Accepts 16-bit I&Q
time-domain samples, outputs 4096 interleaved 32-bit I&Q frequency
channels.

The general philosophy is that each of these executables reads binary
data from stdin, and writes output binary data to stdout. As noted above,
time-domain data is input as signed 16-bit I&Q samples. That is, each
sample consists of 4 bytes: 2 for the in-phase component and 2 for the
quadrature component. The output of the DRX module are blocks of 4096
samples, each sample consisting of 8 total bytes (4 bytes for the 32-bit
signed in-phase component and 4 bytes for the 32-bit signed quadrature
component). Each of 4096 samples within a block contains the data for one
frequency channel for a single time step.

The drx testbench module accepts command line parameters to set the
various DRX runtime configurable parameters outlined in [3]. In addition
to the C++ simulator, sample Python code leveraging the numpy and mat-
plotlib modules are provided to exercise each executable and produce graph-
ical output.

4 Validation

While the C simulation is merely an intermediate product of the DRX de-
velopment effort, it is nevertheless a useful exercise to examine how the C
simulation matches up with the LWA technical requirements specified in
[2]. Table 1 captures the LWA technical requirements relevant to the DRX
C simulation. Due to the deterministic nature of digital signal processing
techniques, most of the LWA technical requirements relevant to the DRX
can (and must) be correct ”by design”. That is, proper design techniques
ensure that the DRX meets the requirements. For the DRX the relevant
design analysis can be found in [3].

4

Number Requirement Value Validation By
TR-1A/B Frequency Range 20-80 MHz By Design
TR-2 Instantaneous BW per beam 8 MHz By Design
TR-3 Min channel width 100 Hz By Design
TR-5A Min temporal resolution 10 ms By Design
TR-24A/B RFI mitigation Qualitative By Design & Test

Table 1: Technical requirements relevant to the DRX C simulation

Because many of the technical requirements must be correct ”by design”,
experimental validation of the C language DRX simulation is limited to ver-
ification that 1) the C simulation implements the design specified, 2) effects
due to fixed-point implementation are tolerable, 3) the simulation handles
known DSP corner cases. The tests documented in the remainder of this
section are included to give an indication that the simulation is function-
ing correctly based on these criteria, but the tests here are by no means
exhaustive, nor do they capture the full extent of the tests performed the
simulation. These tests were conducted in three phases: 1) validation of
the ”digital downconversion” (DDC) component (including the ”first-stage
tuner”, ”CIC low-pass filter”, and ”FIR low-pass filter” components shown
in Figure 1), 2) validation of the remaining ”channelizing” components (the
”polyphase filter bank” components of Figure 1), and 3) integration tests
of the entire simulation.

4.1 Digital Down-Conversion Tests

The first tests conducted on the DRX simulation validated the gross oper-
ation of the first stage tuner, consisting of the mixing, CIC, and FIR filter.

Figure 2 shows the time domain output of the first stage tuner for a
single tone for varying CIC decimation factors. Note that in the deci = 6
case, in which the tuned bandwidth is 2(6−0) = 64 times narrower than
the deci=0 mode, the tone has moved partially outside of the increasingly
narrow passband.

Figure 3 shows the time domain output of the first stage tuner for a
single, constant-frequency input tone for various center tuning frequency
parameter. This data is taken in the deci = 0 mode, which provides approx-
imately 8 MHz of bandwidth. Note the attenuation that occurs beyond the
4 MHz cutoff frequency.

Figure 4 shows the FFTed output of the first stage tuner for a white
noise input applied to the DRX. This data was taken in the deci = 0 mode,

5

0 20 40 60 80 100 120 140
Time (output samples)

-1500

-1000

-500

0

500

1000

1500

A
m

p
lit

u
d
e

deci=0
deci=2
deci=4
deci=6

Figure 2: Time-domain output of tuner for single tone with varying CIC
decimation factors

0 20 40 60 80 100 120 140
Time (output samples)

-1500

-1000

-500

0

500

1000

1500

A
m

p
lit

u
d
e

freq=0 (0.0 MHz)
freq=20 (1.9 MHz)
freq=40 (3.8 MHz)
freq=60 (5.7 MHz)
freq=80 (7.7 MHz)

Figure 3: Time-domain output of tuner for single tone with varying fre-
quency tunings

6

-8 -6 -4 -2 0 2 4 6 8
Frequency Offset (MHz)

-7

-6

-5

-4

-3

-2

-1

0

P
o
w

e
r

(d
B

)

Figure 4: Incoherent average of 4096 FFTs of the first stage tuner output
with white noise applied to the DRX input

which provides approximately 8 MHz of usable passband. Note that the
passband is within 4 MHz of the center frequency, and that the noise power
shown does not directly correspond to the out of band rejection values for
the filter.

4.2 Channelizer Tests

The fine channelizer component of the DRX is composed of a polyphase FIR
filterbank followed by an fixed-point fast Fourier transform (FFT) module.

Figure 5 shows the amplitudes for 8 of 4096 phases of the polyphase FIR
component when the input is excited by a 4096-sample length rect() signal.
The rect() signal length is equal to the number of phases of the polyphase
FIR, and so each phase of the filterbank sees a unit impulse. The 8 phases
shown are evenly spread across the entire filterbank, such that evidence
of the interpolating effect of the polyphase response is evident across the
channels.

Figure 6 shows the output of the fixed-point FFT module when excited
by a single value of 16 in input bin 4. The values from a reference floating-
point FFT algorithm (numpy) are represented by the green traces, while
the values from the fixed-point module under test are shown in blue. The

7

0 5 10 15 20 25 30 35
Output Sample Number

A
m

p
lit

u
d
e

Figure 5: Output of eight (out of 4096) phases of the polyphase FIR when
excited by a rect(x) input

maximum deviation is 0.5 LSB units, which indicates the algorithm worked
correctly in this test case.

4.3 Fully Integrated DRX Tests

After validating each component of the DRX simulation individually, tests
of the integrated DRX simulation were performed. For these tests input
data from was produced using floating-point arithmetic, then converted to
12-bit fixed-point, so as to mimic an ideal 12-bit analog to digital converter
operating at 196 MSPS. Unless otherwise noted, graphs depict a single FFT,
captured randomly from the DRX simulator output stream. That is, no
post-process averaging has been applied to the output. Furthermore, no
dither has been applied to any of the sinusoidal input signals.

Figure 7 shows the amplitude output of the DRX when excited by a -0.5
dBFS single tone aligned with the FFT frequency bins. Figure 8 shows the
same results, but zoomed tightly around the FFT bins containing the tone.
One FFT bin away the power level is below -75 dBc, and beyond two bins
the power levels remains below -97dBc. These results are consistent with
the expected results of -75dBc and -100 dBc from [3]. The internal math
of the DRX is predominantly at 16 bits, which puts a theoretical bound of

8

0 500 1000 1500 2000 2500 3000 3500 4000 4500
-20

-15

-10

-5

0

5

10

15

20

SingleOneEntry(4) Test
Maximum delta: 0.50 SD: 0.00

0 500 1000 1500 2000 2500 3000 3500 4000 4500
-20

-15

-10

-5

0

5

10

15

20

Figure 6: Real (top) and imaginary (bottom) output of the fixed-point FFT
module when excited by a single value of 16 in input bin 4. The values from
a reference floating-point FFT are shown in green, while data from the unit
under test is shown in blue.

9

0 500 1000 1500 2000 2500 3000 3500 4000 4500
FFT Bin

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

P
o
w

e
r

(d
B

c)

Figure 7: Single-tone, FFT Bin-Aligned Test

1.76+6.02×16 ≈ 98 dBc. Thus the measured -97 dBc spurious level appears
to be limited by quantization effects rather than filter roll-off.

To ensure that the behavior is stable for input frequencies not related to
the FFT bin width, the experiment above was repeated at offsets that are
multiples of 0.2

√
2 times the FFT bin size. The factor 0.2

√
2 is arbitrary, but

is a convenient irrational number suitable for generating test tone frequencies
not harmonically related to internal DRX frequencies. Figure 9 shows the
results of this test. Note the low-level, and relatively well-behaved noise
away from the carrier, and the smooth transition between the two adjacent
frequency bins.

For completeness, a two tone test was conducted in which two tones
100 + 0.1

√
2 FFT bins apart at -6.5 dBFS were provided as inputs into

the DRX simulator. Figures 10 and 11 show the results, which notably are
absent of detectable nonlinearity-generated products.

To demonstrate out-of-band rejection, the two tone test was repeated but
modified to place the two tones just out of the tuned band. The highest in-
band spurious product was measured at -94.5 dBc, which is consistent with
expectations for the test setup of two -6.5dBFS tones and 16-bit internal
arithmetic.

A further test was conducted in which Gaussian white noise was provided

10

2040 2045 2050 2055 2060
FFT Bin

-140

-120

-100

-80

-60

-40

-20

0

P
o
w

e
r

(d
B

c)

Figure 8: Single-tone, FFT Bin-Aligned Test (zoomed)

2040 2045 2050 2055 2060
FFT Bin

-140

-120

-100

-80

-60

-40

-20

0

P
o
w

e
r

(d
B

c)

Figure 9: Single-tone tests at steps of 0.2
√

2 times the width of an FFT bin

11

0 500 1000 1500 2000 2500 3000 3500 4000 4500
FFT Bin

-160

-140

-120

-100

-80

-60

-40

-20

0

P
o
w

e
r

(d
B

c)

Figure 10: Two-tone Test Results

2200 2300 2400 2500 2600 2700 2800 2900 3000
FFT Bin

-140

-120

-100

-80

-60

-40

-20

0

P
o
w

e
r

(d
B

c)

Figure 11: Two-tone Test Results (zoomed)

12

0 500 1000 1500 2000 2500 3000 3500 4000 4500
FFT Bin

-150

-140

-130

-120

-110

-100

-90

P
o
w

e
r

(d
B

c)

Figure 12: Out-of-band two-tone Test Results

as input to the DRX simulator, the results of which are shown in Figure 13.

5 Document History

• Revision 0.1 - This is the initial version of this document

6 Conclusion

The DRX C-language simulation provides a ”bit-accurate, functional inter-
face control document” between the externally visible performance require-
ments and the RTL development of the DRX. Results from the output of
the simulator have been presented to verify that the simulator functions
correctly in a variety of relevant test-cases.

The source code for the DRX simulator can be made available to inter-
ested parties upon request. The code is revision controlled with the GIT
version control system, and patches, comments and suggestions are wel-
comed. The code repository also contains Python scripts to generate all the
graphs in this document, and the author particularly welcomes additional
test cases.

13

0 500 1000 1500 2000 2500 3000 3500 4000 4500
FFT Bin

-8

-7

-6

-5

-4

-3

-2

-1

0

P
o
w

e
r

(d
B

)

Figure 13: White noise test - average of 256 output periods

References

[1] Ellingson, S. LWA Station Architecture Ver 1.0, LWA Memo 119, Novem-
ber 19, 2007.

[2] Janes, C. The Long Wavelength Array System Technical Requirements
Ver. “Draft #9” , LWA Memo 118, November 19, 2007.

[3] York, J. LWA DRX High-level Design - v0.2, LWA Memo 114, December,
2007.

[4] Donadio, M. CIC Filter Introduction, July 18, 2000.

14

