

LWA"1+" Scientific Requirements Namir Kassim, Tracy Clarke, & Wendy Lane

- Acceleration of Relativistic Particles in:
 - Hundreds of SNRs in normal galaxies at energies up to 10¹⁵ eV.
 - Thousands of radio galaxies & clusters at energies up to 10¹⁹ eV
 - Ultra high energy cosmic rays at energies up to 10²¹ eV and beyond.
- Cosmic Evolution & The High Redshift Universe
 - Evolution of Dark Matter & Energy by differentiating relaxed & merging clusters
 - Study of the 1st black holes & the search for HI during the EOR & beyond
- Plasma Astrophysics & Space Science
 - Ionospheric waves & turbulence
 - Acceleration, turbulence, & propagation in the ISM of Milky Way & normal galaxies.
 - Solar, Planetary, & Space Weather Science
- Transient Universe
 - Possible new classes of sources (coherent transients like GCRT J1745-3009)
 - Magnetar Giant Flares
 - Extra-solar planets
 - Prompt emission from GRBs

LWA Scientific Specifications

(update of specs originally presented in LWA Memo #49)

Frequency Range Spatial resolution Largest Angular Scale Baseline range Sensitivity [20,80 MHz]: (1 hr, 4 MHz, dual pol.) Number of Stations Dynamic range: Δv_{max} (per beam)

 Δv_{min} 0.1 kHzTemporal Res ($\Delta \tau$)1 msecFoV [20,80] MHz[8,2]°Polarization:Dual orthogSky Coverage $z \le 74^\circ$ Simul. Beams3 spatial & 1#: parameter range calculated for [20,80] MHz

Required[#]

20 MHz to 80 MHz $\theta \le [8,2]$ " [8,2]° 107 m to 470 km $\sigma = [1.0,0.5]$

52 x 256 stands 10^4 32 MHz (R<0.5 km) 8 MHz (R>0.5 km) 0.1 kHz 1 msec [8,2]° Dual orthogonal $z \le 74^\circ$ 3 spatial & frequency [20,80] MHz

Desired[#]

 $\begin{array}{l} 10 \text{ MHz to 88 MHz} \\ \theta \leq [6,1.5]" \\ > [8,2]^{\circ} \\ < 107 \text{ m to 535 km} \\ \sigma < [1.0,0.5] \end{array}$

>52 x 256 stands >10⁴ (per channel) Full RF

0.01 kHz 1 ns > $[8,2]^{\circ}$ Dual orthogonal $z \le 80^{\circ}$ > 3

Phased Development

—	DI			
Time	Phase	Description	Acronym	
2004	0	Existing 74 MHz VLA	VLA74	
2006-2008	I Funded!	Long Wavelength Development Array +Long Wavelength Array Station #1	LWDA LWA-1	
2007-2008	Ib	LWA Station #1 (LWA-1) + LWA Outlier Stations (LWA-2 & 3)	LWA-1+	
2008-2010	II	9 station Long Wavelength Intermediate Array	LWIA	
2010-2012	III	LWA Core + Outliers	LWAC	
2012-2014	IV	High Resolution LWA	LWA	
2009-	V	LW Operations and Science Center	LWOSC	

Focus here on science with LWA-1+

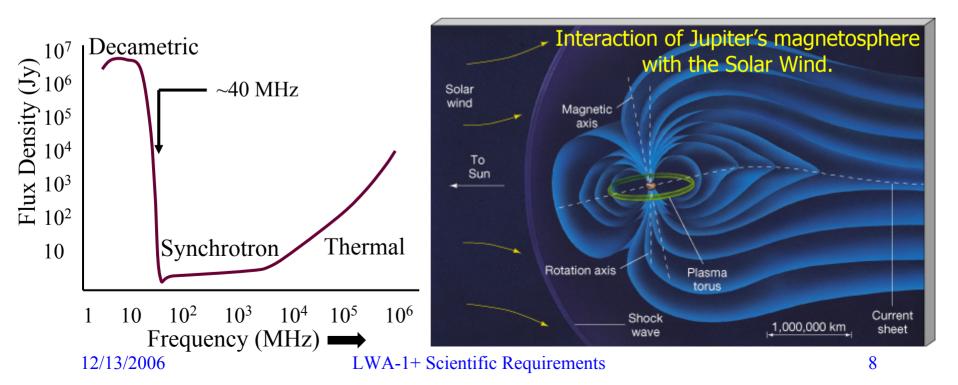
12/13/2006

- Scientific Value Scale
 - (1) Fundamental Advance (e.g. Nature paper)
 - (2) Good dissertation topic
 - (3) New, but not terribly exciting (i.e., unlikely to be funded solely for scientific merit)
 - (4) Not new, but worth doing because it helps validates the instrument or trains people
- Rating LWA-1 Science
 - Transients: ~1.5
 - RRL-based ISM studies: ~2.1
 - Pulsar-based ISM studies ~2.1
 - Pulsar studies: ~2.7
 - Solar system- Jupiter: ~3.3; Sun: ~3.3

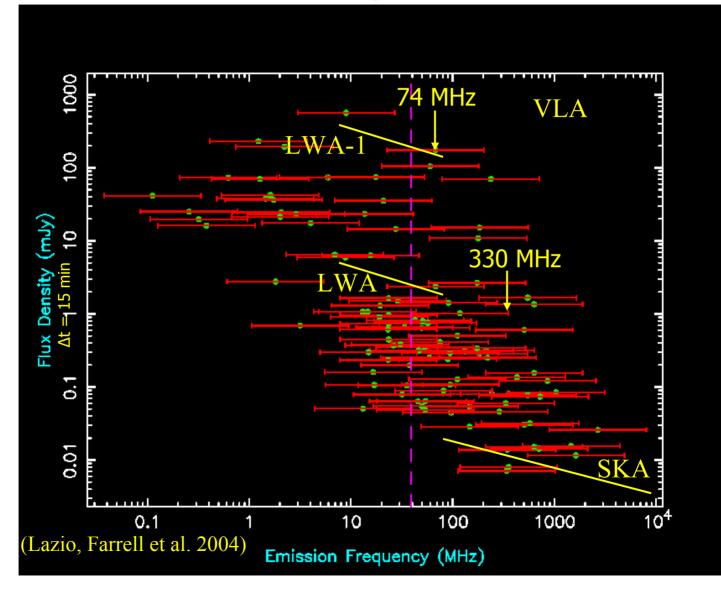
LWA-1 Sensitivity

- Assumptions
 - 256 stands (aka 512 dipoles), $\Omega_{dipole} = [(\pi/180)*100^{\circ}]^2$
 - $T_{sys} \sim 2000 \text{ K} [74/v (MHz)]^{2.6}$
- Collecting Area
 - $A_{e-dipole} = \lambda^2 / \Omega_{dipole}$
 - $A_{e-dipole} \sim 74 \text{ m}^2 (20/v \text{ (MHz)})^2$
 - $A_{e-station} \sim 1.9 \text{ x } 10^4 \text{ m}^2 (20/v \text{ (MHz) })^2$
 - VLA₇₄ ~ $2 \times 10^3 \text{ m}^2$

- [5.4 m² @ 74 MHz]
- [~1.4x10³ m² @ 74 MHz]
- Sensitivity: $\sigma_{\rm rms} = 2 k_{\rm B} T_{\rm sys} / [\epsilon A_{\rm e-station}^* (2\Delta v \Delta t)^{1/2}]$
 - $\Delta v = 8$ MHz, $\Delta t = 1$ hr: $\sigma_{rms} \sim [74, 36]$ mJy at [20, 74] MHz
 - $\Delta v = 8$ MHz, $\Delta t = 5$ min: $\sigma_{rms} \sim [256, 124]$ mJy at [20, 74] MHz
 - Assume system efficiency $\varepsilon = 0.5$


- Background: Existing HF/VHF experiments ETA & GASE
 - Emphasize all-sky observing and real-time de-dispersion capability
 - Focused on search for prompt, coherent radio emission from GRBs
- Advantage/complement of station-based LWA-1 observations is angular resolution & sensitivity suggested programs include
 - Target known candidates at multiple frequencies
 - Multiple beams at different v to provide wide bandwidth measurements
 - Targets inc. GRBs, Crab Pulsar, Galactic Center, nearby flare stars, known exo-planetary systems
 - Serendipity-driven target numerous fields
 - Survey entire sky by pointing multiple- ν beams at a different field each day, or
 - Form fan-beam by stacking multiple single-v beams along meridian
 - Latter emphasizes sky coverage over bandwidth
 - Gaining rudimentary experience now with LWDA drift scans

Key advantage over VLA: ability to inflate Ω^*t through long dwell times



- Below 40 MHz, Jupiter, when bursting, is brightest object in solar system
- LWA might detect emission from extra-solar "Jupiters"
 - Independent verification of planetary systems using new technique.
 - Proof of magnetosphere magnetic shield of cosmic rays pre-requisite for life?
 - LWA-1 pathfinder observations long shot, but advantage over current VLA searches through longer integrations and at lower frequencies

LWA-1 Transient Science: Predicted Planetary Radio Emission

~10 minute bursts

every 77 minutes timescale implies

coherent emission

0

Time in Days since 30-September-2002 00:00

12/13/2006

Fux Density (Jy beam⁻¹)

GCRT J1745-3009

å

0

8

1.15

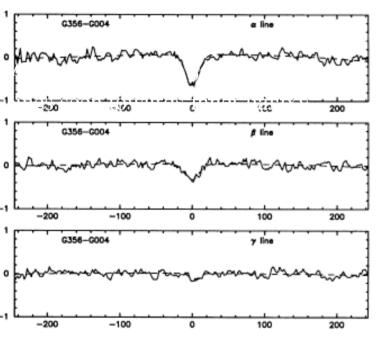
LWA-1 Transient Science: Known Galactic Examples

- Consider GCRT J1745-3009 (Hyman et al. 2005)
 - Bursts: ~ 1 Jy at 330 MHz, ~10 minutes duration
 - If coherent (S α λ⁶) up to 10⁴ boost at 74 MHz
 - LWA-1 Detectability
 - 5 min, 8 MHz, 74 MHz: $1\sigma \sim 63 \text{ mJy}$
 - Situation 10X worse towards GC
 - $T_{sys} \sim 10^4$ K towards GC, A_e down by 2X
 - $1\sigma \sim 0.6 \text{ Jy}; \geq 5\sigma \text{ detection if } \alpha \leq -1$
- Consider recent eruption of SGR 1806-20
 - ~ 0.5 Jy at 240 MHz
 - $\alpha \sim -2.1 => 5$ Jy at 74 MHz lasts for many days
 - 1 hr, 8 MHz, 74 MHz: $1\sigma \sim 0.4 \text{ Jy} \rightarrow >12 \sigma$ detection
- These known cases look very feasible
 - Especially considering leverage in Ω^{*t} space

LWA-1 could do exciting transient work!

LWA-1 Science: ISM Studies Using RRLs

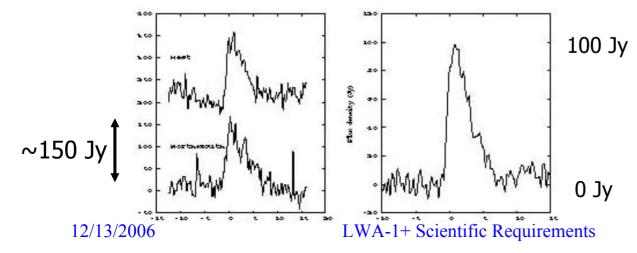
Carbon & Hydrogen Radio Recombination Lines are unique diagnostics of the cold ISM at very low frequencies


- Carbon RRLs are of particular interest
 - Detected to very high Rydberg states (up to n~768)
 - Absorption lines below 150 MHz (in emission above that)
 - Atoms very sensitive to interstellar environment permit excellent measurements of ρ , T, & ionization levels (Payne et al. 1994).
 - Seen all along inner Galactic plane (Erickson et al. 1995)
- LWA-1 offers improvements over other instruments
 - Parkes 64 m: 100 m LWA-1 improves resolution
 - NRAO 300 ft (transit instrument): tracking ability of LWA-1 superior
 - Frequency range: LWA-1 could study the lines at multiple frequencies
 - <u>Essential</u> for understanding underlying physics
 - Wider v range than Parkes or UTR-2
- RFI will make detection very challenging
 - Lines no longer detectable at Parkes
 - LWA-1 detection: excellent demonstration of ability to do sensitive work in the SW-US

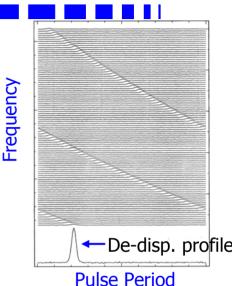
LWA-1 will improve over current capabilities.

LWA-1 Science: ISM Studies using RRLs

Erickson et al. 1985

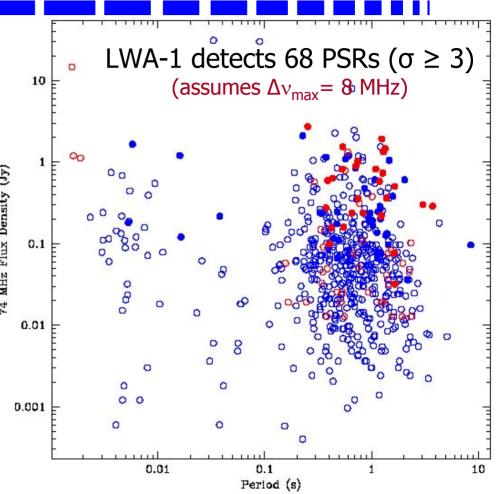

- Sensitivity Calculation
 - 1 line, 1 polarization: 10 hours
 - Frequency independent
 - ∞ [filling factor]⁻²
- Single LWA Station
 - Can do several lines at once, 2 pol
 - Detect in ~ [5,25] hrs @ [≤40,74] MHz
 - Higher frequency work takes more time
 - Need access to lowest LWA ν range
 - Need $\Delta v = 0.1$ KHz (1-2 km/s @25 MHz)

LWA-1 will push beyond Parkes - a Galactic plane survey (student thesis?) is very feasible.



- Detect single pulses via de-dispersion use to
 - Investigate physics of PSR emission mechanisms
 - Drifting pulses, profiles, inter-pulses
 - Derive pulse-averaged low frequency spectra over LWA range
 - Poorly known, especially in lowest LWA frequency range
- Giant pulses (GPs) & other spurious PSR emission
 - Crab GPs now observed at 23 MHz (Popov et al. 2006)
 - GP spectra do not appear to follow simple power law
 - LWA-1 will search for spurious emission from other nearby, bright PSRs
 - Crab-like GP "echoes" lasting days possible new probe of small-scale structure within inner synchrotron nebula (Crossley et al. 2006, astroph/0612109)

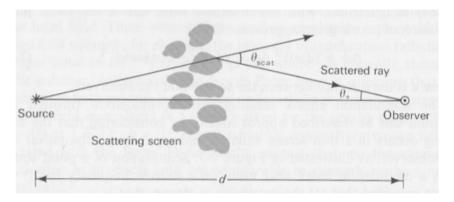
Crab Giant Pulses at 23 MHz: left panel – single pulse in two adjacent frequency channels; right panel – average of 10 strong pulses

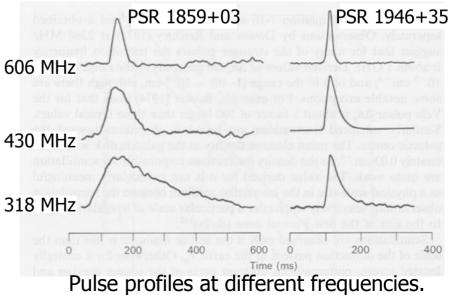


LWA-1 Science: Feasibility of Detecting Pulsars

- Target bright, low DM pulsars
- Source list developed from
 - Flux density based on measured or extrapolated spectrum
 - NE2001 scattering model used to estimate pulse broadening
 - Combined with known PSR periods to pick sources that will not be scatter broadened away
 - LWDA "Pilot search" now underway for B0329+54
 - S/N for LWA-1 much higher due to greater collecting area & bandwidth

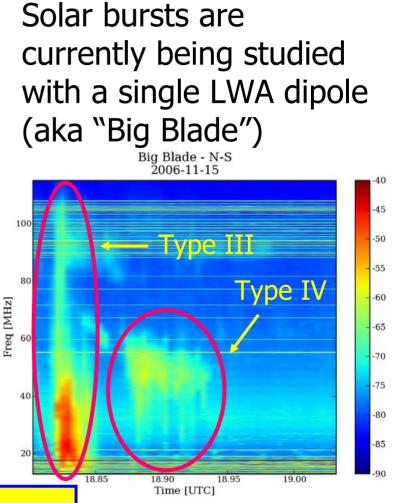
Measured ≤ 102 MHz – detected
Extrap. from 400 MHz – detected
Measured ≤ 102 MHz – not detected
Extrap. from 400 MHz – not detected


12/13/2006


LWA-1 Science: ISM Studies Using Pulsars

- Breakdown of cold plasma dispersion law?
 - DM $\neq \sim \Delta v^2$?
 - But Phillips & Wolszczan (1992) find no breakdown at 25 MHz
- ISM tomography from single pulse studies
 - Shapes of Crab giant pulses determined by scattering on interstellar plasma irregularities (Popov et al. 2006)
- Combine pulse broadening time with measured angular broadening to constrain distribution of line-of-site medium (Chatterjee et al. 2001)
 - Anomalous scattering at low frequencies? (Cordes & Lazio 1997)

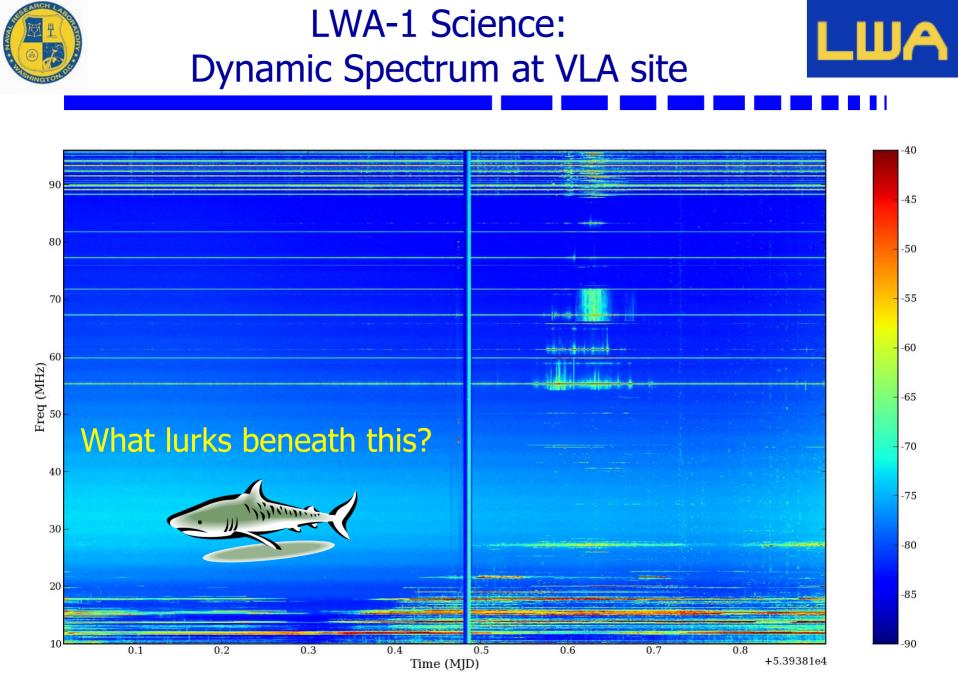
Schematic showing geometry of source, scattering region, & observer.



LWA-1 Science: Solar System Studies

- Solar
 - Some solar bursts may have fast (~50 ms), narrow-band (<10 kHz) structure requiring more sensitivity than existing single-dipole monitoring systems (e.g. Big Blade, GBSS or BIRS)
 - See papers by G. Mann & G.P. Chernov
 - LWA-1 will allow 16X higher temporal or spectral resolution at comparable S/N to ongoing single dipole monitoring programs
- Jupiter
 - Voyager saw wealth of fine temporal & spectral structure in decametric bursts that require sensitivity of LWA-1 to observe from Earth
 - ms time resolution useful

Both applications need broad frequency range



Key HF/VHF scientific goals rely on assuming thermal noise limited sensitivities for very deep integrations

- LWA-1 can explore how deep we can go before *something unexpected* stops us & address technical questions not answerable with one dipole
 - How well can we remove RFI, & what is the effect of low level RFI not seen in normal integrations?
 - How do noise characteristics vary with time & position on the sky?
 - How stable are our pass-bands?
 - How well can we form beams & what are the effects of dipole dropouts?
 - Can be done concurrently with ongoing science programs
 - Need measurements at different frequencies & positions in the sky

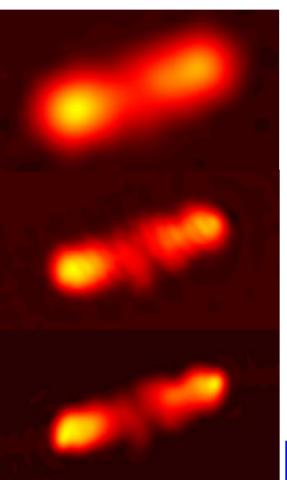
More engineering tests & commissioning experience than science – still one of the most important things we will do

12/13/2006

Multi-Tasking with LWA-1

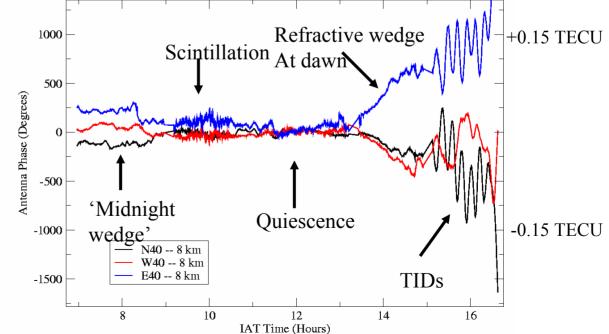
- Scientific breadth of data encompassed by 1 LWA-1 beam is impressive
 - Each station beam provides rich sampling of time-frequency domain
 - Suggests multiple concurrent science & engineering programs
- Deep integrations on Galactic plane
 - Search for Galactic transients and
 - Search for RRLs and
 - De-disperse for fields containing known pulsars and
 - Provide engineering experience
- Deep integrations off Galactic plane
 - How deep we can go? and
 - Extra-solar planet searches and
 - Pathfinder experiment for future EOR/Dark Ages studies
 - As planned by many new low frequency instruments big & small

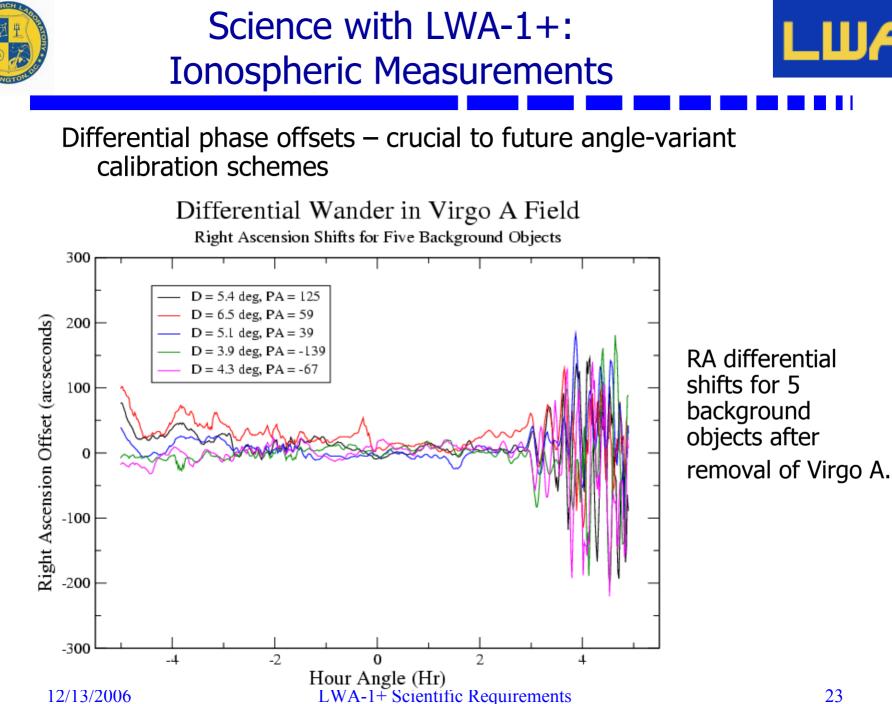
Demonstrates utility of future LWA observations with large FoV, multiple beams, & broad-band digital receivers


- LWA-1 with LWA-2 & 3
 - Independent operation
 - Anti-coincidence RFI avoidance for transient observations
 - Interferometry
 - Phase & model fitting to constrain accurate source positions
 - 3 stations increase accuracy via closure phase, ability to measure fluxes
 - Angular broadening/scattering measurements is 400 km the right limit?
 - Explore deep, interferometric integrations
 - ~65 km baseline: confusion limit ~ few mJy
 - Takes days to reach with larger array *can we get anywhere close?*
 - Explore ionospheric scaling laws as tests of future calibration schemes
- LWA-1 with 74 MHz VLA
 - Monitor selected VLA observations simultaneously with LWA-1.
 - E.g., X-ray & radio triggered searches are planned for the GC
 - 74 MHz VLA observations of *SWIFT* triggered GRBs are planned
 - Monitor with LWA-1 at lower frequencies dispersion an advantage.
- LWA-1+ with 74 MHz VLA
 - Imaging with LWA-2 & 3 outliers as next step beyond PT link

Science with LWA-1+: LWA 2 & 3 with the VLA

LWA-1 has 10X sensitivity of 1 VLA dish – partial LWA outlier stations can compliment VLA 74 MHz for improved angular resolution on bright objects

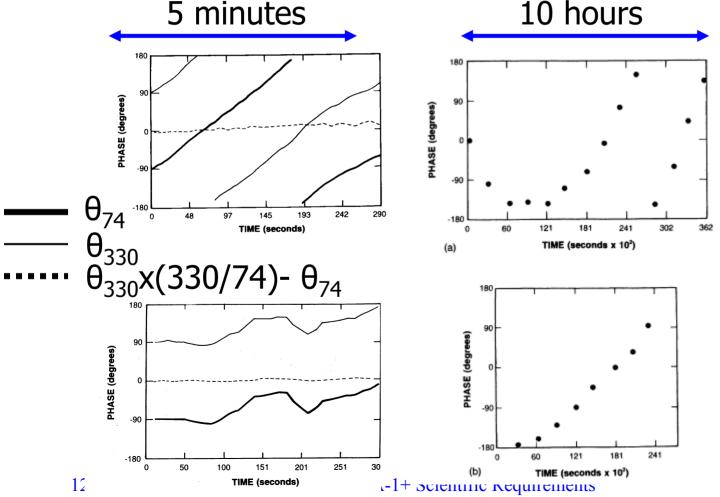

- VLA A configuration
 - Limited resolution


- VLA A+ PT
 - Resolution better, fidelity poor because of "lonely" outlier
- VLA A + PT + LWA-1+
 - Image fidelity improved with single outlier at Horse Springs

Significant impact even from only 1-2 outlier stations

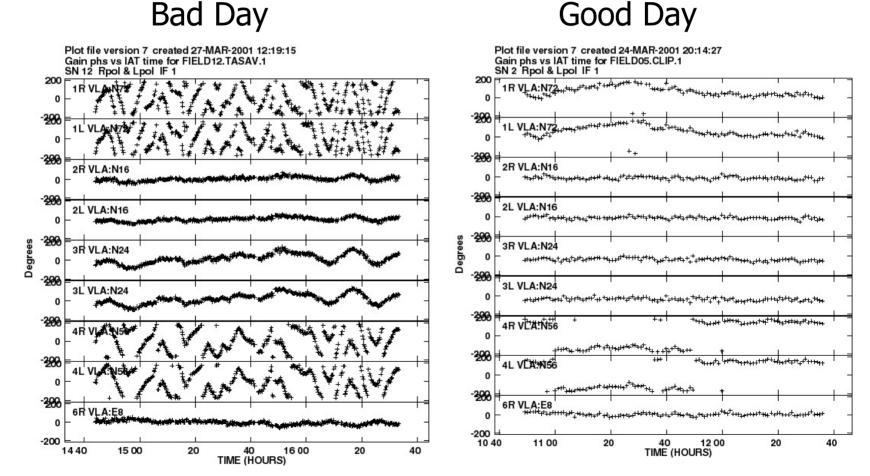
Science with LWA-1+: Ionospheric Measurements

- A LW interferometer is extremely sensitive to $\triangle TEC$
 - Current VLA has \triangle TEC precision $\leq 10^{-3}$ TECU [1 TECU = $\int n_e dl \sim 10^{17} \text{ m}^{-2}$]
- LWA's power is ability to measure ∆TEC towards <u>many</u> simultaneous directions
- Basic building blocks of those measurements are the phase measured between any two stations
- As soon as LWA-2 is available, we can start exploring those kinds of measurements!



- How well do ionospheric phases & phenomena vary with frequency?
 - Potentially crucial tool for future calibration schemes

"Phase transfer" works on timescales of few minutes, but over many hours "mystery drift" sets in – what causes it?


Can't explore how phenomena scale without access to large frequency range

Science with LWA-1+: Ionospheric Measurements

• Begin to build up an ionospheric weather almanac

12/13/2006

Science	Desirable Memo 35 (M35) Modifications M35: <u>http://www.ece.vt.edu/swe/lwa/memo/lwa0035.pdf</u>	
Transients	Benefits from more spatial beams – M35 has two	
ISM via RRLs	Needs $\Delta v_{min} = 0.1 \text{ kHz} - M35 \text{ is } 4 \text{ KHz}$	
	(for 1.5 km/s @ 20 MHz)	
ISM via Pulsars	Needs $\Delta v_{min} = 1 \text{ kHz} - M35 \text{ is } 4 \text{ KHz}$	
	(for $\Delta t = 1 \text{ ms}$)	
Pulsars	Needs $\Delta v_{min} = 1 \text{ kHz} - M35 \text{ is } 4 \text{ KHz}$	
	(for $\Delta t = 1 \text{ ms}$)	
Sun	Needs full RF or $\Delta v_{max} = 60 \text{ MHz} - \text{M35}$ is 10 MHz	
	(need 6 x M35 bandwidth)	
Jupiter	Needs $\Delta v_{\text{max}} = 20 \text{ MHz} - M35 \text{ is } 10 \text{ MHz}$	
	(need 2 x M35 bandwidth)	

Large Δv_{max} & broad tuning range key to most LWA-1 science – even M35 specs need minor tweaks

LWA, M35, LWA-1+: Science Requirements Comparison

Parameter	LWA Spec.	Memo 35	LWA-1+
Freq Range	20-80 MHz	Yes	Yes
# Stands	256	Yes	Yes
Antenna Sens	Sky noise dom	Yes, $>+ 6 \text{ dB}$	Yes, >+6dB
Δv_{min} /beam	0.1 kHz	4 kHz	0.1 kHz (RRLs)
Δv_{max} /beam	8 MHz	5.33 MHz	Yes
			(with # beams)
# Beams	\geq 3 dual pol.	2 dual pol. (4	\geq 6x M35 (sun)
	(v & spatial)	spatial, 2v)	(v)
Δt_{\min}	1 msec	TBD (mod 256	1 msec
		µsec)	
Polarization	Full	Yes	Yes
Field of View	[8,2]° at [20,80] MHz	Yes	Yes
Sky Coverage	$z \le 74^{\circ}$	Yes	Yes

Changes to M35 specs – increased spectral resolution, more beams.

Summary

- LWA-1 will do good science ranging from:
 - Potentially very exciting transients
 - More modest pulsar, ISM, & solar system studies we know we can do
 - Both extremes represent good science
 - Serendipitous discoveries possible
 - Viable student thesis projects
 - Invaluable technical lessons including deep, efficient, multi-purpose integrations as pathfinders towards future LWA experiments
- With LWA 2 & 3 aka LWA-1+
 - Standalone with LWA-1
 - Anti-coincidence RFI avoidance for concurrent transient observations
 - Demonstrate station-based interferometry
 - Determine source locations & flux densities
 - Explore ionospheric scaling laws & phenomenology test future calibration schemes
 - With VLA
 - Monitor VLA transient observations for lower frequency counterparts.
 - LWA-2 & 3 outliers for 74 MHz imaging next step beyond PT-link
- Useful because LWA stations are BIG.
 - 512 dipoles/station = 75% of Clark Lake array each 100-m station like GBT
 - Large Δv_{max} & broad tuning range key to most early (non-imaging) science
 - Realism: power of LWA lies in imaging that is mainly unavailable to LWA-1+