

Namir Kassim, Wendy Lane, & Tracy Clarke Naval Research Laboratory

- Step 1
 - Approach 1:
 - » Start with a list of LWA scientific goals
 - Astrophysics, solar & space-science, & ionospheric physics
 - Emphasize a diversity of phenomena and capability for *exploration science*
 - » Develop a list of instrumental requirements to reach each science goal
 - Approach 2 (emphasized in this presentation):
 - » Start with a list of instrumental specifications
 - » Derive requirements for each based on scientific goals that stretch the capabilities to a maximum
- Step 2
 - Combine results with practical considerations to create a list of top-level technical specifications

08/29/2005

Key LWA Science Drivers

- Cosmic Evolution & The High Redshift Universe
 - Large Scale Structure Dark Matter & Dark Energy
 - 1st super-massive black holes & HI during the EOR & beyond
- Acceleration of Relativistic Particles in:
 - SNRs in normal galaxies at energies up to 10^{15} ev
 - Radio galaxies & clusters at energies up to 10^{19} ev
 - Ultra high energy cosmic rays at energies up to 10^{21} ev and beyond
- Plasma Astrophysics & Space Science
 - Ionospheric waves & turbulence
 - Acceleration, Turbulence, & Propagation in the ISM of Milky Way & normal galaxies
 - Solar, Planetary, & Space Weather Science
- Exploration Science
 - Open the region < 100 MHz to exploration in the footsteps of the VLA at cm λ s
 - Emphasize pioneering capabilities for new frontiers e.g. the Transient Universe
 - Maximizes the opportunity for Discovery Science through flexibility

- Unexplored frequencies below 100 MHz for which the ionosphere has traditionally limited resolution and sensitivity
- Unique physical processes which can be studied only at low frequency:
 - spectral turnovers
 - scattering
 - steep-spectrum emission
 - thermal absorption distance indicator
- Coherent processes: Jupiter "turn on" at 40 MHz
- Solar radar, Cosmic-Ray tomography, CR air-showers below 60 MHz
- Continuum Spectra emission, absorption, & scattering
 - ≥ 2 octaves allows accurate spectra within LWA band

Required: $20 \le v \le 80$ MHz (2 octaves) Desirable: $1 \le v \le 111$ MHz (t_{FF} -80MHz = $2*t_{FF}$ -111MHz)

Practical Considerations:

- Economics: need to use a single dipole element
 - » Δv_{max} for active antenna with 6 db sky-dominated T_{sys} is ~4X
- Due to the FM bands, a practical upper limit is 88 MHz: 4X gives 20-80 MHz
- No reason to go to higher frequencies where other instruments (eg. GMRT) are more sensitive
- Practical lower limit tied to feasibility of ionospheric calibration & DR limits due to global RFI reflection
- Ionosphere might permit measurements of bright sources to a few MHz, 10 MHz is an optimistic lower bound

Required: 20 MHz $\leq v \leq 80$ MHz Desirable: 10 MHz $\leq v \leq 88$ MHz

SR-2A: Highest Angular Resolution

- Radio galaxies:
 - $\theta_{\text{median}} \sim 10$ " to image 1' sources with ≥ 28 beams
 - Jets: $\theta_{res} \le 2$ " at 80 MHz to sample $\gamma = 50-200 e^{-1}$ population responsible for IC X-ray emission at 0.2-8 keV
 - Knots: $\theta_{res} \le 0.5$ " at 80 MHz
- Normal galaxies $\theta_{res} \le 2$ " at 80 MHz
- Scattering:
 - compete with cm VLBI for ISS ($\theta_{20cm} \sim 5 \text{ mas}$): $\leq [25,1.5]$ " at [20,80] MHz
- Exploration: \geq 20 dB improvement over past low frequency arrays

Required: $\theta \le [6,1.5]$ "at [20,80] MHz Desirable: $\theta \le [2,0.5]$ "at [20,80] MHz

TS-2A: Longest Baselines (B_{max})

- Practical Considerations: Confusion
 - Sufficient resolution to avoid classical confusion in short to moderate integrations
 - Assume $A_e = 1E6 \text{ m}^2$ at 20 MHz, $\Delta v = 4$ MHz, array effic.= 50%
 - » 100 km: CC is [4,0.2] mJy at [20,80] MHz, requires [0.25,23] hrs
 - » 400 km: CC is [0.5,0.025] mJy at [20,80] MHz, requires [16,1470] hrs.
 - » 600 km: CC is [0.3,0.015] mJy at [20,80]MHz, requires [44,4100] hrs.
 - Sufficient resolution to mitigate strong source sidelobe confusion
- Practical upper limit: run out of calibrators of sufficient brightness
- Sharing of infrastructure: 400 km LWA fits with New Mexico Array
- Scattering limits on resolution: [7,0.4]" at [20,80] MHz
- Longer than existing and previous interferometers by 2-3X

Required: $B_{max} ≥ 400 \text{ km}$, or ≤[8,2]" at [20,80] MHzDesirable: $B_{max} ≥ 600 \text{ km}$, or ≤[7,1.4]" at [20,80] MHzRef: 400 km ~ [2.7E4,1.1E5]λ at [20,80] MHz; $B_{max-VLA} ~ 1.8E5 \lambda$ at 20 cm

- Cosmic Ray Tomography (HII regions): $\theta_{LAS} \ge [40,10]$ ' at [20,80] MHz
- Largest nonthermal sources
 - Cen A $\sim 10^{\circ}$
 - SNRs, Cygnus Loop & HB21 $\sim 5^{\circ}$
 - Galactic Center structures ~4°
- Clusters and Large Scale Structure
 - Typical cluster ~ 2 Mpc = $[2.5, 0.3]^{\circ}$ at z = [0.01, 0.1]
 - Supercluster/filaments visible at redshifts comparable to the Coma Cluster ($z\sim0.025$) with sizes ~ 7° across
- Sun & Solar Wind (e.g. CMEs) : $\theta_{LAS} \ge [5,2]^{\circ}$ at [20,80] MHz

Requires: $\theta_{LAS} \ge [8,2]^{\circ} at [20,80 MHz]$ **Desirable:** $\theta_{LAS} \ge [16,4]^{\circ} at [20,80 MHz]$

TS-2B: Shortest Baselines (B_{min})

- Configuration studies required to quantify radial density profile of collecting area to realize naïve λ /D-based estimates
 - » Need simulations to demonstrate realistic capability of recovering extended structure in both snapshot & synthesis imaging
 - » Need to determine radial density profile consistent with assumptions about needs to avoid classical confusion in short to medium integrations
- Can stations be closer than theoretical 100 m minimum (ie overlapping stations)?
 Shadowing constraints?

Required: $B_{min} ≤ 100 m \{LAS ≥ [8,2]^{\circ} at [20,80] MHz\}$ Desirable: overlapping $B_{min} ≤ 50 m \{≤[16,4]^{\circ} at [20,80] MHz\}$ Ref: 100 m ~ [7,27]λ at [20,80] MHz; $B_{min-VLA} ~ 175 \lambda$ at 20 cm

Ability to image weak and extended sources at mJy to sub-mJy/bm sensitivity

- Steep-spectrum sources such as cluster relics and halos
- Extra-solar planets
- HII region tomography for determining the 3D distribution of the cosmic ray electron gas
- Detection of non-thermal sources should be competitive with other large facilities – at least for surveys
 - » eg. EVLA: $\sigma_{20cm} = 6 \mu$ Jy (stokes I, 1 hr)
 - » With $A_e \sim 1 \text{ E6 m}^2$ (20 MHz) the LWA competes for α ≤ [-1.2,-1.5] at [20,80] MHz much better for surveys because of large FoV
- Exploration: realize ≥ 20 db improvement over past arrays

Required: $\sigma = [1.0, 0.5]$ mJy at [20, 80] MHz [$A_e = 1$ E6 m² at 20 MHz] **Desirable:** $\sigma \leq [0.5^*, 0.1]$ mJy at [20,80] MHz [$A_e = 4$ E6 m² at 20 MHz] *Classical Confusion at 400 km

08/29/2005

- $A_e = 1E6 \text{ m}^2 \text{ provides} \ge 20 \text{ dB sensitivity}$ improvement over existing and past low frequency arrays
- # of Dipoles
 - $\Omega_{FWHP} \sim 3$ steradians at [20,80] MHz
 - $A_{e\text{-dipole}} \sim \lambda^2 / \Omega \sim [75,4.7] \text{ m}^2 \text{ at } [20,80] \text{ MHz}$ (subtle function of v)
 - A_e ~1 E6 m² at 20 MHz requires ~ 13,500 dipoles

TS-3A: Collecting Area

Required: $A_e = 1 E6 m^2$ at 20 MHz Desirable: $A_e = 4 E6 m^2$ at 20 MHz

08/29/2005

LWA Kick-Off UNM

11

- Scientifically flows from many requirements, most notably sensitivity
- DR should allow thermal noise limited imaging beyond short integrations and ideally to classical confusion limits
- Thermal noise is not the main limitation
 - » Sidelobe & main beam confusion
 - » RFI
 - » Calibration errors (e.g. poor phase calibration related to ionosphere)

TS-3B: Dynamic Range (DR)

- Simulations needed to verify calibration & imaging performance
- DR to accommodate powerful solar bursts requires special consideration

Required: DR ≥ [1 x10³,2x10³] at [20,80] MHz 1 hr thermal noise in presence of 1 Jy source Desirable: DR ≥ [2x10³,8x10³] mJy at [20,80] MHz 20 MHz limit assumes 400 km classical confusion limit in presence of 1 Jy source.

08/29/2005

SR-4: Instantaneous Bandwidth

- Continuum studies
 - Broader bandwidth increases sensitivity but introduces errors in flux density related to the spectral index of each source
 - For SI work it is desirable to have a few % flux accuracy or better
 - » $\Delta v/v = 10\%$: for $\alpha = [-0.7, -3]$, $\Delta S = [3, 16]\%$
 - » errors may be mitigated in some cases by spectral modeling of data
- Broad-band phenomena (handle as special requirements, or address with multiple beams)
 - CR air-showers: $\Delta v > 32$ MHz at dipoles
 - Coherent emission from GRBs
 - Tracking drifts of solar bursts: $\Delta v \ge 32$ MHz

Required: Tunable with $\Delta v_{max} = 4$ MHz: $\Delta v/v \leq [20,5]\%$ at [20,80] MHz Desirable: Tunable with $\Delta v_{max} = 8$ MHz: $\Delta v/v \leq [40,10]\%$ at [20,80] MHz

SR-5: Spectral Resolution

- **Radio Recombination Lines from the cold ISM** require $\Delta v \leq 500 \text{ Hz}$
- HI absorption requirements: $\Delta v \sim \text{few km/s}$, or $\Delta v \leq 1 \text{ kHz}$ at 100 MHz
- Must prevent bandwidth smearing in widefield imaging:
 - 10% reduction in 1.25 kHz channel at 20 MHz and primary beam first null for 400 km baselines
- **Radar:** Solar: $\leq 100 \text{ Hz}$; Planetary: $\leq 10 \text{ Hz}$
 - Consider as special requirement?

Required: $\Delta v \leq 100 \text{ Hz}$ **Desirable:** $\Delta v \leq 10 \text{ Hz}$

- Wide-field Imaging; prevent time averaged smearing
 - $-\Delta\tau \le 0.9\,$ sec for 10% flux reduction at 20 MHz, primary beam first null and 400 km baseline

SR-6: Temporal Resolution

- Time variable phenomena such as:
 - Flare stars: $\Delta \tau \sim 50-100$ msec
 - Solar & Space Weather, CMEs, Flares, IPS, IP Shock: $\Delta \tau \le 100$ msec
 - » Consistent with low frequency FASR specs
 - Pulsars: $\Delta \tau \sim 100 \ \mu s$
- Cosmic-ray airshowers: $\Delta \tau \sim 50$ nsec at the dipoles special application
- Ionospheric structure including TIDs: $\Delta \tau \sim 10$ msec

Requires: $\Delta \tau \leq 10$ msec **Desirable:** $\Delta \tau \leq 100$ µsec

(need special provision for dipole based sampling at $\Delta \tau \leq 50$ nsec)

TS-4,5& 6: Bandwidth, Spectral & Temporal Resolution

- Instantaneous Bandwidth
 - Must be able to achieve twice Nyquist sampling rate
- Spectral Resolution
 - RFI excision requires $\Delta v \leq 1 \text{ kHz}$
- Temporal Resolution
 - Calibration need to sample data on timescales fast compared to ionospheric changes: ≤ 1 second
- Correlator design is directly impacted: instrument bit-rate must support maximum desired timescales and spectral resolution requirements in combination with bandwidth, polarization, sampling rate, etc.

Required: $\Delta v_{max} = 4 MHz$, $\Delta v \le 100 Hz$, $\Delta \tau = 10 msec$ **Desirable:** $\Delta v_{max} = 8 MHz$, $\Delta v \le 10 Hz$, $\Delta \tau \le 100 \mu sec$

SR-7 & TS-7: Polarization Studies

- Scientific Goals
 - Polarization studies of pulsars, solar and interplanetary magnetic phenomena, Jupiter, and polarized Galactic and extragalactic sources are all possible
 - A second polarization provides increased sensitivity
 - 2 circular polarizations are required to mitigate against differential absorption of circularly polarized coherent sources
- Technical Requirement
 - Circular polarization must be presented to the correlator because of Faraday rotation in the ionosphere
 - Polarization purity realizing \geq 10 db over much of the sky will be challenging hope to achieve \geq 20 dB after calibration

Required: 1 circular polarization, isolation $\geq 10 \, dB$ **Desirable:** full polarization (2 linears or 2 circular) $\geq 20 \, dB$

SR-8: Sky Coverage

- Desire the widest possible sky coverage to maximize visible objects
- Declination coverage
 - Galactic center studies require good imaging to at least $\delta = -30^{\circ}$
 - Ideally would extend into the 4th quadrant, and include imaging of bright, isolated objects at low declinations
 - » Clark Lake imaging of eg. Fornax A, Puppis A

Requires: Good imaging to $\delta \le -30^{\circ}$ *Desirable: Bright objects to* $\delta \le -40^{\circ}$

TS-8: Zenith Angle Coverage

- Zenith Angle Coverage
 - Ω_{HPBW} of our active antennas is ~ 100° (z > 40° gives δ > -16°)
 - As demonstrated at Clark Lake and the 74 MHz VLA, observations to $z > 15^{\circ}$ ($\delta > -40^{\circ}$) will be possible in good ionospheric weather and at reduced sensitivity

 Extend array geometry in the north-south direction to compensate for forshortening at low zenith

> **Requires:** Good dipole performance to $z > 40^{\circ}$ **Desirable:** Restricted dipole performance to $z > 15^{\circ}$

- Science requirements:
 - Would like a FoV as least as large as the LAS we hope to image, to avoid mosaicking
 - Survey-speed will be maximized by larger FoV
 - Sky monitoring efficiency is also increased
 - A larger FoV improves the chances of finding rare and/or transient sources in each observation
- Technical Considerations
 - λ/D gives us $\theta_{FoV} \sim [8,2]^{\circ}$ at [20,80] MHz for 100 m stations

Requires: FoV ≥ [8,2]° *at* [20,80] *MHz Desirable: FoV* ≥ [16,4]° *at* [20,80] *MHz*

- Useful to have at least 2 full sensitivity beams
 - "solar beam"
 - "student/outreach beam"
 - "maintenance beam"
 - "survey beam"
 - "transient beam"
- Use of multiple beams enhances the survey speed of the instrument
- Multiple beams can be used to increase the instantaneous observed bandwidth for spectral studies

Requires: 2 dual pol. beams (equiv. to 4 single pol. beams) Desirable: \geq 4 single pol. beams

TS-10: Multi-beaming

- Can be used to multiply instantaneous bandwidth
- Phase Calibration
 - Option to bootstrap calibration from our highest frequencies where [phase distortions, sensitivity] are at a [minimum, maximum] to lower frequencies
 - More than 2 beams are required to allow removal of 2π phase ambiguities across frequency space
 - Multiple beams may be required to scan & self-calibrate 3C & 4C sources in sky on sufficiently short timescales

Required: 4 single pol. beams **Desirable:** \geq 4 single pol. beams

TS-11: uv coverage

- Flows from many scientific requirements
 - Need sufficient uv coverage to suppress main-beam and side-lobe confusion in order to obtain good dynamic range
 - Need to achieve good balance between angular resolution and demanding surface brightness sensitivity requirements
 - Snapshot capability requires good instantaneous uv coverage
 - Simulations required to derive the optimal array configuration
 - » Ionospheric calibration may put priority on aperture plane coverage over uv coverage
 - » Need to sufficiently sample ionospheric pierce points required for Fourier (or other) characterization of ionospheric waves across FoV
 - Immovable stations is key challenge to achieving good uv coverage

Required: Approach VLA multi-configuration uv coverage Desirable: Exceed VLA multi-configuration uv coverage

The Perfect Array? Guidance for Number & Size of Stations,

- Station Diameter (D_S)
 - VLA : $D_s = 25$ m too small at 74 MHz (6.2 λ), OK at 300 MHz (27 λ)
 - The equivalent at 80 MHz is $D_s = 100m$ or 4X smaller FoV (16X in area)
- # of Dipoles per station (N_{DS})
 - Minimize station sidelobes, & preserve collecting area across 20-80 MHz
 - » $N_{DS} = 250-350$ allows a natural taper to minimize primary beam sidelobes
 - Estimate needed for calibration: $N_{DS} \ge 234 \ (\lambda_m/4)^{0.1}$

» Based on VLA experience (self-cal and VLSS)

For $N_{DS} = 256$ dipoles, and $A_e = 1$ E6 m²: # of stations $N_s = 53$

• uv coverage: $N_s = 53$ matches multi-configuration VLA: $4N_{VLA}^2 \sim N_{LWA}^2!!$

Required: $D_S = 100m$, $N_{DS} = 256$, $N_S = 53$ Desirable: $D_S > 100m$, $N_{DS} > 256$, $N_S > 53$ Simulations needed to verify calibration & imaging performance

LWA Discovery Space: in frequency & baseline

Going to the lowest frequency & longest baselines makes the LWA unique even when compared to other low frequency instruments.

Technical Specifications: Summary

	Required	Desirable
Frequency Rar	$\frac{1}{20} \text{ MHz to 80}$	MHz 10 MHz to 88 MHz
 Angular resolu 	tion: $\theta \leq [8,2]$ "	$\theta \le [7, 1.4]$ "
LAS at [20,80]	$MHz \geq [8,2]^{\circ}$	$\geq [16,4]^{\circ}$
 Baseline range 	: 100 m to 400 k	50 m to 600 km
 Sensitivity [20 	,80 MHz]: $\sigma \leq [1.0, 0.5]$	$\sigma \le [0.5, 0.1]$
 Collecting Are 	a (m ²) $A_e = 1 \times 10^6$	$A_{e} = 4 \times 10^{6}$
Dynamic range	e: $DR ≥ [1x10^3, 2x]$	$x10^3$] DR $\ge [2x10^3, 8x10^3]$
• Δv_{max} (per bea	m) $\Delta v \ge 4 \text{ MHz}$	$\Delta \nu \geq 8 \text{ MHz}$
Δv_{min}	$\Delta \nu \leq 100 \; Hz$	$\Delta \nu \leq 10 \text{ Hz}$
Temporal Res	$\Delta \tau = 10$ msec	$\Delta \tau \leq 0.1 \text{ msec}$
Polarization:	1 circular	Full
Sky Coverage:	$z \ge 40^{\circ}$	$z \ge 15^{\circ}$
FoV [20,80] M	[Hz [8,2]°	≤ [16,4]°
# of beams:	4 single pol.	\geq 4 single pol.
Configuration:	2D array, N = 3	53 stations 2D array, N≥53
Philosophy:	Philosophy: User-oriented, open facility; proposals solicited from entire commun	
 Mechanical lif 	etime ≥ 15 years for p	ootentially long lifetime

08/29/2005

Backup Slides

08/29/2005

Discovery Space – what is left?

- New wavelengths just about finished
 - The region below 100 MHz is the last poorly explored one
- Angular resolution & sensitivity
 - The LWA will increase both the angular resolution and sensitivity by more than two orders of magnitude compared to Clark Lake
 - » Like going from Einstein to Chandra (while skipping ROSAT & ASCA)
- Volume of space sampled
 - An area where low frequency instruments, with their intrinsically large fields of view, will naturally thrive
- New observing paradigms: multi-beaming
 - Another natural capability of an electronic low frequency array

The LWA efficiently exploits the last remaining areas of astrophysical discovery space

(slide courtesy KIK – consistent with Cohen LWA specific confusion calculations)

LWA Discovery Space: in resolution & sensitivity

