The Next Generation of Receivers for Low Frequency Radio Astronomy:

Designing a Sky-Noise-Limited Receiver for LWA

Steve Ellingson Contributions from D. Wilson, T. Kramer

Virginia Tech ellingson@vt.edu

Santa Fe, NM - September 2004

The LWA Receiver Design Problem

Why This is (Relatively) Difficult

- <u>Above 1 GHz</u>, achieving 3:1 tuning range and >10% BW is easy (in fact, routine).
 - This is because receiver input is almost always noise limited under these conditions
 - RFI power is relatively small and does not significantly impact selection of receiver architecture
 - Popular solution: "upconvert-downconvert" architecture
- What is different below 1 GHz?
 - Impossible to avoid large, persistent RFI, which can easily dominate over noise.
 - Upconvert-downconvert architecture requires at least 2 mixers, which now have stringent linearity requirements. Becomes expensive and risky.
 - Strong motivation for direct sampling (no mixers)...

Antenna Considerations

- Antennas using "dipole-like" elements are preferred for their relative simplicity and somewhat omnidirectional pattern.
- To maintain a nice pattern, such antennas cannot be used at frequencies > about 1.5 times resonance.
- As frequency drops below resonance, antenna impedance becomes overwhelmingly reactive – power transferred through antenna terminals quickly dwindles towards zero
 - "Fat" dipoles do better at this than "thin" dipoles
 - Certain types of "active antennas" have the potential to improve this, but for simplicity we will neglect this possibility here.
- As we will see, these issues upper-bound achievable antenna BW to about 3.5:1, and much less for thin dipoles

Power Densities <u>at Input to Receiver</u>, Perfectly-Matched (VSWR=1) Antenna

Virginia Tech

Power Densities At Input to Receiver, Perfectly-Matched (VSWR=1) Antenna

Virginia IIII Tech

The Man-Made Noise Background

Figure 2 Noise distribution with Frequency

The levels in Figure 2 are taken from the ITU-R recommendation [P.372], which contains descriptions of the various types of electromagnetic noise.

LNA Noise Figure Constrains Upper Frequency Limit

Virginia

LNA Gain Should Be Minimized

(consistent with role of setting system temp)

A1b_1

Power Densities At Input to Receiver, "Minimally Useful" (VSWR=100!) Antenna

A1b_100

Why Fat Dipoles are a Good Choice: NTLA Fat Dipole vs. 1.65-m Thin Dipole

A2b

Why Fat Dipoles are a Good Choice: NTLA Fat Dipole vs. 1.65-m Thin Dipole

Measurements taken at PLFM site @ PARI (Rosman, NC).

Spectrum analyzer (∆v=300 kHz) at end of feedline

Digitizer Basics

- Most "high speed" A/D circuits encode full scale at ~1 V_{pp} @ 50Ω, and therefore clip around +10 dBm
- Quantization noise power of about -6*N_b' dB (relative to input power) is generated, where N_b' is the number of bits actually exercised
 - Noise-like signals generate quantization noise which is spectrally white and uniformly distributed over one Nyquist bandwidth
 - However, RFI generates quantization noise which is on average spectrally white, but contain "sympathetic" spurious signals
 - All A/Ds generate a few extra dB of noise over the quantization noise due to analog imperfections (Sometimes combined with the above to define an "effective number of bits" (ENOB)).
- All A/Ds are slightly non-linear, and so create additional spurious products, harmonics, and intermodulation. These often become a bigger problem than quantization noise for A/Ds wider than 8-10 bits.

Straight from the Datasheet: Analog Devices AD9054 (An 8-bit, 200 MSPS A/D)

TPC 18. Spectrum: f_S = 200 MSPS, f_{IN} = 70.1 MHz TPC 19. Two-Tone Intermodulation Distortion

Power Densities At Input to Receiver, Measured using an 8-bit, 200 MSPS A/D

Power Densities At Input to Receiver, Measured using an 8-bit, 200 MSPS A/D

Power Densities At Input to Receiver, Measured using an 8-bit, 200 MSPS A/D

Power Densities At Input to Receiver, PLFM Configuration, 8-Bit Digitization

Power Densities At Input to Receiver, PLFM Configuration, 8-Bit Digitization

Power Densities At Input to Receiver, PLFM Configuration, 8-Bit Digitization

More Bits is not a Magic Bullet

Unfortunately, Gain Won't Save You Either

- Linearity (IP₂, IP₃) will never be high enough to prevent generation of spurious products from being worrisome
- Worse, these things become worse quickly with increasing gain.
- For details, see S.W. Ellingson, R. Ferris, and H. Hinterigger, "Station Processing for a Low Frequency Array in WA: Receivers & Beamforming", *Int'l Radio Quiet Array Meeting*, Kahuku, HI, Mar 2004. (Available via Haystack MWA website.)
- See also Tom Gaussiran's talk in this meeting.

NTLA x 0.68

Power Density at Input of Receiver for Suggested LWA Design Concept

Virginia Tech

NTLA x 0.68

Partially equalize Galactic background to prevent spectrum below 50 MHz from dominating system noise

A/D 10 bits @ 200 MSPS

NTLA x 0.68

A/D 10 bits @ 200 MSPS

NTLA x 0.68

A/D 10 bits @ 200 MSPS

NTLA x 0.68

NTLA x 0.68

Additional gain for improving margin over quantization noise

- 15 dB gain here puts the VSWR=12 Galaxy signal 10 dB above quantization noise of a realistic 10-bit A/D
- Need to be able to scale back gain to accommodate RFI and high levels of man-made radio noise

10 bits @ 200 MSPS

What Happens after Digitization: Channelization & Beamforming

- See S. Ellingson, R. Ferris, and H. Hinterigger, "Station Processing for a Low Frequency Array in WA: Receivers & Beamforming", *Int'l Radio Quiet Array Meeting*, Kahuku, HI, Mar 2004. (Available via Haystack MWA website.)
- Scheme for channelization and beamforming described there applies to LWA as well
 - Straightforward to scale that design downward (in terms of data rates, spectral resolutions) for LWA
 - May be some additional cost savings, since high-cost items (A/Ds and FPGAs) will be much closer to "mainstream" market specifications

What Happens after Digitization: Channelization & Beamforming

- See S. Ellingson, R. Ferris, and H. Hinterigger, "Station Processing for a Low Frequency Array in WA: Receivers & Beamforming", *Int'l Radio Quiet Array Meeting*, Kahuku, HI, Mar 2004. (Available via Haystack MWA website.)
- Scheme for channelization and beamforming described there applies to LWA as well
 - Straightforward to scale that design downward (in terms of data rates, spectral resolutions) for LWA
 - May be some additional cost savings, since high-cost items (A/Ds and FPGAs) will be much closer to "mainstream" market specifications

OSU/NASA "IIP" FFT Spectrometer

2 IF channels 10 bits @ 200 MSPS (~80 MHz) per channel 3 big FPGAs ~ US\$1500 in Quantity=1

Year 2002 FPGA technology

ADC

DIF/ APB

ADC

OSU/NOAA "CISR" FFT Spectrometer

2 Channels 10 bits @ 200 MSPS (~80 MHz) per channel 1 big FPGA

~ US\$1000 in Quantity=1

Year 2003 FPGA technology

DIF/APB/FFT/SDP

