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Introduction
In last decade, exciting discovery 

of extrasolar planets
n ~ 100 planetary systems
n Indirect detection via optical 

signature from host star
Detecting fi characterizing:
n What are their properties?
n Can we detect planets at other 

wavelengths?
n Implications for habitability of 

planets to be discovered?

Joint theoretical and observational 
program focussed on magnetic 
fields and radio emission



Introduction

HD 40979
3.32 MJ in 267 d orbit (a = 0.811 AU) with e = 0.23 

(Fisher et al. 2003)

In last decade, 
exciting discovery 
of extrasolar 
planets

n ~ 100 planetary 
systems

n Indirect detection via 
optical signature 
from host star

“Do there exist many worlds, or 
is there but a single world?  
This is one of the most 
noble and exalted questions 
in the study of Nature.”—
St. Albertus Magnus, De 
Caelo et Mundo (13th

century)
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Magnetic Fields and 
Extrasolar Planets

Why would we care?
n Presence and strength of magnetic field

Composition
n Rotation period

u Difficult to determine by any other means
u Defined by magnetic field for solar system 

giant planets
n Existence of satellites (plus their orbit)
n Estimate of plasma density in the 

magnetosphere



Planetary Magnetospheres I

n Planetary-scale 
magnetic fields:
Earth, Jupiter, Saturn, 

Uranus, & Neptune
n Produced by rotation 

of conducting fluid
uEarth: liquid iron 

core
uJupiter & Saturn: 

metallic hydrogen
uUranus & Neptune: 

salty oceans



Planetary Magnetospheres II

n Planetary magnetic field 
immersed in solar wind.

n Solar wind is high-speed 
plasma with embedded 
magnetic field.

n Pressure from solar wind 
impacts and deforms 
planetary magnetic field.

ÿ Magnetosphere
Large objects, e.g., Jovian

magnetosphere is 5x 
diameter of full Moon



Magnetospheres and 
Habitability

Solar wind particles 
deflected at 
magnetosphere.

n Protects the atmosphere.
n Affects the planet's 

albedo.
nMay protect genetic 

material of organisms.

free streaming

deflected
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Atmospheric Protection
n Thermal vs. Nonthermal 

atmospheric escape
uThermal: Does molecular 

thermal velocity exceed 
planetary escape velocity?

(freshman physics problem)
uNonthermal: collisional 

physics (sputtering, mass 
loading, ...)

n Implications for water 
retention?

(Shizgal & Arkos 1996, Rev. Geophys., 
34, 483)

vesc
(gravity)

vth (temperature)

thermal

non-thermal



Cosmic Rays and Planetary 
Albedo

n Cosmic rays induce 
nucleation in water-
vapor saturated air.

n Larger cosmic ray flux 
fi more cloud cover.

n Effect seems to be more 
pronounced for Galactic 
cosmic rays rather than 
solar particles.

(e.g., Svensmark 2000, Space 
Sci. Rev., 93, 155)



Cosmic Rays and Life



Planetary Radio Emission:
From Magnetosphere to Pole

n Solar wind incident on magnetopause
uDeflect electrons relative to ions 

and create currents
u Explosive changes in tail field 

topology: Reconnection yields 
dB/dt Æ I

n Currents travel down highly 
conductive magnetic field lines and 
deposit energy in polar auroral region
u 1%  of auroral input energy to 

visible/UV aurora
u 1% of auroral input energy into 

electron cyclotron radio emission 
(Gurnett 1974)



Planetary Radio Emission
From Magnetosphere to Pole

n Solar wind loading of 
magnetosphere produces radio 
emission

n 1% of auroral input energy into 
electron cyclotron radio 
emission (Gurnett 1974)

n Auroral radio sources typically 
map directly to auroral optical 
sources (Huff et al. 1988)

Earth (DE-2)

Jupiter



Planetary Radio Emission in the 
Solar System

n Burke & Franklin (1955) discover 
radio emission from Jupiter.

n Late 1960s/Early 70s: Earth’s polar 
region recognized as strong radio 
source (107 W).

n Voyager era: Opens field up. 
n All gas giants have strong planetary 

magnetic fields.
n Gas giants also have stong

auroral/polar cyclotron radio 
emission.

n Jupiter: Strongest at 1012 W, Io-
driven and non-Io component

n Most components driven by solar 
wind-magnetosphere interaction.



Jupiter at 10 pc

n Hopeless?
n Extrasolar planets have larger radiated powers than 

Jupiter?
n Variability?
n … ?

~ 0.0000002 Jy
(~ 0.2 mJy)

10 pc

~ 50,000 Jy
(~ 50 kJy)

4.5 AU

Flux DensityJupiter
(~ 30 MHz)



Radiometric Bode’s Law
n Planetary magnetosphere 

intercepts outflowing solar wind 
power.

n Good correlation between 
planetary radiated power (Prad) 
and input solar wind kinetic 
power (Psw)

Prad ~ e Psw
x

u 0.9 < x < 1.2
u e ~ few ¥ 10-6 to few ¥ 10-3

n Desch & Kaiser (1984) 
recognized system-level pattern 
fi predicted Uranus’radio power 
before 1986 Voyager encounter.

n Zarka et al. (1997) refined by 
adding Uranus, Neptune, and 
non-Io DAM.

Zarka et al. (2001)



Radiometric Bode’s Law II
n Planetary magnetosphere 

intercepts outflowing solar 
wind power.

n Psw depends on 
u r,  the solar wind 

density (µ d-2 for 
distance to primary d), 

u V, the solar wind 
velocity, and

u Rm, the radius of the 
magnetosphere (µ m1/3

d1/3 for magnetic 
moment m; distance d).



Blackett’s Law

n Blackett (1947) noticed 
relation between angular 
momentum and magnetic 
field.
u Earth, Sun, 78 Vir
u EM + GR?
u Jupiter?
u Anti-gravity?

n Many modern forms, all of 
approximate form

m µ wM5/3



Emission Frequency
n Earth’s ionosphere 

reflects radiation 
below about 10 
MHz.

n Radio emission from 
Saturn, Uranus, and 
Neptune had to wait 
for spacecraft fly-
bys.

n Locally, electron 
gyrosynchrotron
frequency must exceed 
plasma frequency.

n nc = 5.6 MHz m
m = 4.2 G RJ

3

m µ wM5/3

n Use Blackett’s Law to 
predict magnetic 
moment, and therefore 
emission frequency.



Radiometric Bode’s
Law

P ~ 4 ¥ 1011 W w0.79 M 1.33 d -1.60

nc=23.5 MHz w M1.66 R3

n Predict radiated power levels and 
emission frequency.
u M — Doppler measurements
u d — Doppler measurements
u w — 10 hr, assumed, unless 

tidally locked
u R— 1 Jovian radius, unless 

“hot Jupiter”for which 1.25 RJ, 
viz. HD 209458

u V, r — solar values
ÿ Farrell et al. (1999) extended to 

extrasolar planetary systems.



Variability of Planetary 
Radio Emission

n Planetary radio sources behave as 
exponential amplifiers (Gallagher & 
D’Angelo 1979)

n Other stars may have a higher activity 
than the Sun, i.e., more stellar wind.

Earth cyclotron emission 
exponential variation with solar 
wind speed



Extrasolar Planetary Magnetic 
Fields?

nObserve Ca II H and K 
lines (393.3, 396.8 nm).
nHD 179949: 0.84 MJ

planet in 3.1 d orbit
uDetect ~ 4% variations in 

“line strength.”
uNo estimate of the 

planetary magnetic field 
strength.
uAlso observed t Boo, u

And, 51 Peg, HD 209458

(Shkolnik et al. 2003, Astrophys. J., 597, 
1092)



Nothing New Under the Sun

n “A Search for Extra-
Solar Jovian Planets by 
Radio Techniques”
(Yantis, Sullivan, & 
Erickson 1977)

n Soon after recognition 
that Saturn also an 
intense radio source 
(Earth, Jupiter, and 
Saturn)



n Farrell et al. (1999) made predictions based on 
the 10 planets known at the time.

n Revisit based on current, much larger census 
(Lazio, Farrell, et al. 2004):
uPredicted emission using planets in census as of 

2003 July 1.
uIncludes a factor of 100 to account for “bursts”

from stellar wind variability.
uWill show approximate sensitivity limits for 

various telescopes assuming 15 min. integration 
(to catch “bursts”) and 4 MHz bandwidth.

GMRT

Extrasolar Planet 
Predicted Radio Emission

VLA

[Lazio, Farrell et al. 2004]



1999-06-08

n The radiometric laws 
indicate t Boo is a good 
candidate (“bursts”~ 0.1 Jy
near 50 MHz).

n 27 radio antennas, each of 
25-m diameter,  used as 
interferometer. 
uResolution of a 10- to 36-

km antenna
u Sensitivity of a 130-m dish

n VLA can observe at 74 MHz 
with sub-Jansky sensitivity.
1 Jy = 10-26 W/m2/Hz

t Boo at 74 MHz

Very Large Array Studies

2001-01-19

2003-09-12



n A variety of other planets have 
been observed by our group and 
by Bastian et al.

n Comparable sensitivities at 74 
MHz, better at higher frequencies.

n No detections yet…

r CrB at 74 MHz

VLA Studies II



Additional limits
HD 104985    0.22 Jy
HD 108874    0.33
GJ 903           …
Gl 876           …
u And            ~ 0.4

(Bastian et al. 2000; 
Farrell, Lazio, et al. 
2003; Lazio, Farrell, 
et al. 2004)

70 Vir, t Boo, r CrB

VLA Studies



Why no detections yet?
n Variability
n Stellar wind flux 
n Radiometric Bode’s

law does not apply 
outside of solar 
system.

n Telescope sensitivity
n …

Extrasolar Planet Radio Emission

GMRT

VLA

[Lazio, Farrell et al. 2004]



Long Wavelength Array (LWA)
n Returning to roots of 
radio astronomy

n Several technological 
issues solved from 
previous generation of 
instruments

n Frequency range: 10–80 
MHz

n Initial operation in 2008

n Southwest Consortium 
(NRL, UNM, UT:ARL, 
LANL)

http://lwa.nrl.navy.mil/



Square Kilometer Array

n Next generation radio 
telescope

n ~ 100x as sensitive as the 
Very Large Array

n Frequency range: 0.1–25 GHz
n Site and design studies on-

going
(Decision points in 2006 to 

2008)

http://www.skatelescope.org/



Predicted Radio Emission

GMRT

VLA

SKA

[Lazio, Farrell et al. 2004]

LWA



Summary
• Planetary magnetospheres both informative and sheltering

– Rotation
– Atmospheric loss

• “Magnetic planets”in our solar system emit in the radio fi
Radiometric Bode’s Law

• Current searches toward ~ 10 extrasolar planets have been 
negative.
+ Separate “star”from “planet”fi orbital periodicity?
– Upper limits on stellar wind or planet’s magnetic field

ÿ Prediction from current census is that future generation 
radio telescopes look promising.
ÿ VLA and GMRT data (stellar variability may assist detection)

Research in radio astronomy at NRL is supported by the Office of Naval Research.
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DifficultiesDifficulties
nn Emission weak Emission weak ––probably beyond current capabilities even with probably beyond current capabilities even with 

variability;variability;
nn Beaming increases the flux density, but decreases the probabilitBeaming increases the flux density, but decreases the probabilit y of y of 

detection concomitantly;detection concomitantly;
nn Difficult to disentangle detected emission from that of the starDifficult to disentangle detected emission from that of the star

(periodicity is a key to resolving this ambiguity);(periodicity is a key to resolving this ambiguity);
nn For planets with relatively weak magnetic fields, the cutoff For planets with relatively weak magnetic fields, the cutoff 

frequency (frequency (ffcc ~ 2.8 ~ 2.8 BBsurfsurf MHz) might actually be below our own MHz) might actually be below our own 
ionosphericionospheric cutoff frequency (~ 10 MHz);cutoff frequency (~ 10 MHz);

nn Background source confusion is a serious observational problem aBackground source confusion is a serious observational problem a t t 
long wavelengths (might only be able to observe systems far fromlong wavelengths (might only be able to observe systems far from
galactic plane);galactic plane);

nn EGPsEGPs very close to primary might exhibit different characteristics.very close to primary might exhibit different characteristics.




