

The Extragalactic Radio Sky at Faint Flux Densities

Dr Carole Jackson Research School of Astronomy & Astrophysics October 2002

Probing deep fields...

~ 3000 galaxies

13 radio sources

Radio waveband samples different population of galaxies

Current Deep Radio Surveys

Current Deep Radio Surveys

HDF-s ATCA Image (rms=7 microJy)

The future 1 nJy at 1.4 GHz?

Radio-loud AGN (Quasars & radio galaxies)

CSIRO ATCA PKS 2356-61 FRII RG

Starburst galaxies

NRAO VLA M81 spiral galaxy

Physical characteristics Of the source populations

Spectral Shape

Simple $S \propto v^{\alpha}$ with -0.7 or fitted spectral model

-Ignores (peaked) lowfrequency population (if there is one)

-Ignores GHz-peaked sources

Source Sizes

Recipe for predicting the radio sky from the LRLF + Evolution

For the 3 radio galaxy populations (FRI, FRII & SB):

- -Determine the LRLF & Evolution Adopt reasonable evolution type (LDDE) Use source counts & complete samples to constrain model
- -Transpose Frequency if required
- Calculate source density (sky area, z distr)
- Adopt reasonable source sizes & shapes Randomly place & orient sources on sky

FRI & FRII Evolution & the LRLF

Best-fit to 151 MHz source count

LDDE - FRIIs strongly evolving, FRIs not

Evolution & the LRLF

LRLF from best-Fit model.

Starburst galaxy

LRLF from 2dFGRS-NVSS (Sadler et al 2002)

Evolution from HDF (Haarsma et al 2000)

10 mJy at 151 MHz

P-z distribution

2 mJy at 151 MHz

P-z distribution

1 degree sky region

1 mJy at 151 MHz

P-z distribution

10 arcmin square sky region

P-7 distribution

0.1 mJy at 151 MHz

FRI & FRIIs

From simulated skies - predict resolution required - fraction of sources 'overlapped' (line of sight)

Assumes no frequency-size dependence (probably ok up to 1 GHz?)

Assumes no size-RG age dependence

FRI+FRII LRLF + evolution (?) - degenerate, really FR-split ???

Starburst LRLF + evolution (?) - difficult to determine (HDF small sample)
- Late-type galaxies in LRLF?

Other populations?

325 MHz - WENSS source count

Transpose LRLFs to 325 MHz & generate model count to 0.1mJy

Molonglo Demonstrator project - to 300 MHz science - HI absorption against bright RGs

2 mJy at 325 MHz

10 arcmin square

cjackson@mso.anu.edu.au

