
FPGA-based Direct Conversion Receiver with

Continuous Acquisition to a PC

Qian Liu and Steven W. Ellingson

July 13, 2009

Contents

1 Introduction 2

2 System Architecture 2

3 Firmware 4

4 Demonstration 6

A FPGA Firmware 13

B Data Acquisition Script 19

C Data Analysis Scripts 22

1

1 Introduction

This report describes a FPGA-based direct conversion receiver with high-speed contin-

uous acquisition to a PC over Ethernet using user datagram protocol (UDP). The system

is implemented on an Altera R© StratixR© II EP2S60 DSP development board [1], shown in

Figure 1. The on-board Analog Devices AD9433 A/D converter (ADC) samples data at

120 MSPS, and the output from the receiver has a sample rate of 3.75 MSPS. Each output

sample has 14 bits, 7-bit “I” and 7-bit “Q”, sent as a 16-bit word. The receiver output is sent

to a PC over 100BaseT Ethernet at about 62.7 Mb/s, of which 60 Mb/s is used for samples,

and the remaining 2.7 Mb/s is protocol overhead. The receiver can be tuned to any one

of 16 center frequencies between 1.75 MHz and 54.25 MHz, selected using the push-button

switches SW4 – SW7 shown in Figures 1 and 2. The output 1 dB bandwidth is 3.5 MHz. Full

scale with 1/2 bit back-off varies from 662 mVpp to 940 mVpp with the increasing frequency.

The rest of this report is organized as follows. Section 2 (“System Architecture”) de-

scribes the system architecture. Section 3 (“Firmware”) presents the FPGA firmware. Sec-

tion 4 (“Demonstration”) addresses the system performance. Finally, the appendices give

the source code used in this report: Appendix A (“FPGA Firmware”) is Verilog HDL code

for the implementation of the direct conversion receiver, Appendix B (“Data Acquisition

Script”) is Python code to capture and save the data, and Appendix C (“Data Analysis

Scripts”) is a set of MATLAB/Octave scripts for analyzing captured data.

2 System Architecture

Figure 2 illustrates the system architecture. This design is an extension of the direct

sampling design described in [2]. All the components of the receiver are implemented in

EP2S60F1020C3 using Verilog HDL, and AlteraR© MegaCore R© IP functions provide most of

the signal processing functionality. The swing buffer, Nios II CPU and Ethernet interface

are used for data transfer between FPGA and PC; see [2] for additional details.

Either ADC-A or ADC-B can be used for input. The ADC selection depends on the

firmware programmed to FPGA upon powered-up, which is controlled by a 8-pin DIP

switch (SW2 in Figure 1) as shown in Table 1.

The ADC clock selectors (J3 and J4 in Figure 1) are used for ADC clock source settings.

In our design, their pins 1 and 2 should be connected to choose Stratix II PLL circuitry as

the ADC clock source.

2

Figure 1: Stratix II EP2S60 DSP Development Board [1].

Table 1: Configuration DIP switch (SW2) state for firmware selection

SW2 State1 Seven-Segment
Input

Switch 1 Switch 2 Switch 3 Switch 4 Display U13

Open Closed Closed Open A ADC-A
Closed Open Closed Open b ADC-B
1 The other switches of SW2 (switch 5, switch 6, switch 7 and switch 8) are not

used and can be kept closed as default.

3

A sample is 14 bits: 7 bits for baseband “I” and another 7 bits for baseband “Q”. 2-bit

zeros are added to compose a 16-bit word, interfacing with the swing buffer. That is, the

format of the 16-bit data is “0Q6Q5Q4Q3Q2Q1Q00I6I5I4I3I2I1I0”, where Ii and Qi denote

the i-th bit of the output baseband “I” and “Q” respectively. A Verilog HDL script and a set

of MATLAB/Octave scripts demonstrating the use of this format are shown in Appendix A

and C.

3 Firmware

In Figure 2, the “Clock Synthesis” module uses the AlteraR© ALTPLL MegaCore R© func-

tion to generate all the clocks for the components of the system: The 120 MHz clock is used

as ADC sampling clock; the 3.75 MHz clock is used as the clock for the output register of

receiver and the clock for data-width bridge of the swing buffer; the 1.875 MHz clock is used

as the write clock for the swing buffer; and the 150 MHz clock is used for Nios II CPU and as

the read clock for the swing buffer. The input to the “Clock Synthesis” module is currently

the on-board 100 MHz crystal oscillator.

Figure 3 shows the architecture of the direct conversion receiver section of the FPGA

firmware. The associated Verilog HDL source code is given in Appendix A.

The “Controllable Tuner” module uses the AlteraR© NCO MegaCore R© function to gen-

erate the digital sine and cosine waveforms. The frequency of the waveforms, varying from

1.75 MHz to 54.25 MHz with 16 frequency steps, depends on the selected phase increment

value which comes from the output of the 16:1 multiplexer, as Figure 3 shows. The state

of the 4-bit control s3s2s1s0 is determined using the user push-button switches SW4, SW5,

SW6, SW7. A logic “NOT” operation is performed on s0 when the user pushes down SW4;

the same operation will be performed on the other bits of the state register when their associ-

ated push-button switch is pushed down. Table 2 summarizes the center frequency selection

scheme. The seven-segment display U12 (see Figure 1) indicates which center frequency is

currently selected.

The filters that decimate and lowpass could have been implemented as either multirate

FIR filters or cascaded integrator-comb (CIC) filters. Both can be implemented easily using

Altera R© MegaCore R© functions [3]. However, with increasing decimation factor, the consump-

tion of FPGA resources for the multirate FIR filter will increase faster. We implemented

both types of filters with similar specifications and compared their resource utilization, il-

lustrated in Table 3. The CIC filter has 4 stages, 1 differential delay, and decimator factor

of 32. Their ideal responses are shown in Figure 4: Figure 4(a) is the ideal response of the

4

Figure 2: Block diagram of the system.

Figure 3: Block diagram of the direct down conversion receiver FPGA firmware. The input
signals φ0 to φ15 denote the phase increment values associated with the 16 possible center
frequencies. The 4-bit control s3s2s1s0 is the value of the state register, which is determined
using push-button switches as explained in the text.

5

CIC filter method, and Figure 4(b) is the ideal response of the multirate FIR filter method.

Both Table 3 and Figure 4 show that we can implement the CIC filter scheme with better

performance and less resource utilization in FPGA when the decimation factor is 32. We

also tried to implement a multirate FIR filter with the same performance as that of the

CIC filter and CIC Compensation filter, but its order would be up to 7920 and could not

be implemented in Stratix II EP2S60F1020C3 FPGA. Therefore, we selected the CIC filter

approach for this system.

The passband of the CIC filter is not flat. This issue can be alleviated using a compensa-

tion filter [4], whose coefficients are generated automatically by the AlteraR© CIC Compiler

MegaCore function and can be loaded to the AlteraR© FIR Compiler MegaCore function for

the implementation. Figure 4(a) gives the ideal frequency responses of the CIC filter and

CIC Compensation filter which are designed for the FPGA implementation in this report.

In this case, the combination of the desired CIC filter and CIC Compensation filter provides

very flat magnitude response between −1.75 MHz and +1.75 MHz at baseband.

4 Demonstration

To test and verify the receiver performance, we have done the following three experi-

ments. For each one, we transferred 8000 packets of length 734 samples/packet (1468 bytes

per packet [2]) for a total of 5, 872, 000 samples (about 1.57 s of acquisition).

The first experiment is a “glitch” test to validate data integrity. In the test, channel 0 is

selected; that is, the center frequency of the receiver is 1.75 MHz. Using a 1.7125 MHz tone

with amplitude of 622 mVpp as the input signal, there are 100 samples per period at output

of the receiver. A MATLAB/Octave program (see listing 3 in Appendix C) is used to read

the data from the file generated by the Python capture code (see listing 2 in Appendix B),

and generates an “eye diagram” of the output. Figures 5(a) and 5(b) are the eye diagrams

for 200 periods. Note that no errors or discontinuities are visible.

In the second experiment, DDS-synthesized white noise having 10 MHz (low pass) band-

width and 210 mVrms amplitude is used as the input signal. The output spectrum is then

averaged to trace out the frequency response of the receiver. Since output data are 7-bit

baseband “I” and 7-bit baseband “Q”, the quantization noise density is about 44 dB below

the input noise power density. For the sampling rate of 3.75 MSPS and using a 2048-point

FFT, the frequency resolution is about 1.8 kHz/bin. By selecting 1.75 MHz center frequency

and averaging 2867 FFTs, the computed PSD of the receiver is plotted in Figure 6. Note

that the receiver response is approximately flat in the passband between −1.75 MHz and

6

Table 2: Center frequency selection scheme.

Chan. State Register Center 1 dB Band 3 dB Band 7-Segment
No. s3 s2 s1 s0 Freq. (MHz) Range (MHz) Range (MHz) Display U12

0 0 0 0 0 1.75 0 – 3.50 0 – 3.542 0
1 0 0 0 1 5.25 3.50 – 7.00 3.458 – 7.042 1
2 0 0 1 0 8.75 7.00 – 10.50 6.958 – 10.542 2
3 0 0 1 1 12.25 10.50 – 14.00 10.458 – 14.042 3
4 0 1 0 0 15.75 14.00 – 17.50 13.958 – 17.542 4
5 0 1 0 1 19.25 17.50 – 21.00 17.458 – 21.042 5
6 0 1 1 0 22.75 21.00 – 24.50 20.958 – 24.542 6
7 0 1 1 1 26.25 24.50 – 28.00 24.458 – 28.042 7
8 1 0 0 0 29.75 28.00 – 31.50 27.958 – 31.542 8
9 1 0 0 1 33.25 31.50 – 35.00 31.458 – 35.042 9
10 1 0 1 0 36.75 35.00 – 38.50 34.958 – 38.542 A
11 1 0 1 1 40.25 38.50 – 42.00 38.458 – 42.042 b
12 1 1 0 0 43.75 42.00 – 45.50 41.958 – 45.542 c
13 1 1 0 1 47.25 45.50 – 49.00 45.458 – 49.042 d
14 1 1 1 0 50.75 49.00 – 52.50 48.958 – 52.542 E
15 1 1 1 1 54.25 52.50 – 56.00 52.458 – 56.042 F

Table 3: FPGA resource utilization with different filter structures. Percentages indicate
fraction of total available resources used.

Multirate FIR Filter CIC and Comp. Filters

Logic Cells
Combination ALUTS 29784/48352 (63%) 17835/48352 (37%)

Dedicated Logic Registers 35391/48352 (73%) 18860/48352 (39%)
Total 98% 50%

Total Block Memory Bits 1973728/2544192 (78%) 1973952/2544192 (78%)

7

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−70

−60

−50

−40

−30

−20

−10

0

10

20

Frequency [MHz]

F
ilt

er
 M

ag
ni

tu
de

 R
es

po
ns

e
[d

B
]

CIC
CIC Comp (FIR)
Total Response

(a) Ideal response of the CIC filter scheme.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−80

−70

−60

−50

−40

−30

−20

−10

0

10

Frequency [MHz]

M
ag

ni
tu

de
 R

es
po

ns
e

[d
B

]

Frequency Response
−1 dB line

(b) Ideal response of the multirate FIR filter scheme.

Figure 4: Comparison of ideal filter frequency responses.

8

+1.75 MHz, and drops off sharply thereafter.

The results of the third experiment are shown in Figure 7. In this test, we tune the receiver

to 15.75 MHz center frequency and average 2867 2048-point FFTs to compute the PSD. The

tone in Figure 7(a) is 14.00 MHz with amplitude of 676 mVpp and thus is downconverted to

−1.75 MHz at baseband; the tone in Figure 7(b) is 15.25 MHz with amplitude of 709 mVpp

and thus is downconverted to zero at baseband; the tone in Figure 7(c) is 17.50 MHz with

the amplitude of 734 mVpp and thus is downconverted to +1.75 MHz at baseband.

9

−50 0 50
−60

−40

−20

0

20

40

60

Time [samples]

S
am

pl
e

va
lu

e

Eye Diagram

(a) Eye diagram for baseband “I”.

−50 0 50
−60

−40

−20

0

20

40

60

Time [samples]

S
am

pl
e

va
lu

e

Eye Diagram

(b) Eye diagram for baseband “Q”.

Figure 5: Eye diagram for baseband signals. The “smearing” is due to the slight difference
in clock rate between the signal generator and the development board, for they are not
phase-locked.

−1.5 −1 −0.5 0 0.5 1 1.5
40

45

50

55

60

65

70

75

80

85

90
Actual Receiver Frequency Response

Frequency [MHz]

P
S

D
 [d

B
/1

.8
kH

z]

Figure 6: Computed PSD of receiver output when input is white noise. The slight slope
across the passband is due to the input noise. The reason for the peaks on the edges of the
passband is due to the finite length of the filter that performs CIC Compensation.

10

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
20

40

60

80

100

120

140

160

Frequency [MHz]

P
S

D
 [d

B
/1

.8
kH

z]

(a) 14.00 MHz tone.

−1.5 −1 −0.5 0 0.5 1 1.5
20

40

60

80

100

120

140

160

180

Frequency [MHz]

P
S

D
 [d

B
/1

.8
kH

z]

(b) 15.75 MHz tone.

−1.5 −1 −0.5 0 0.5 1 1.5
0

20

40

60

80

100

120

140

160

Frequency [MHz]

P
S

D
 [d

B
/1

.8
kH

z]

(c) 17.50 MHz tone.

Figure 7: Computed PSD of receiver with different tones.

11

References

[1] Altera Corporation, Stratix II DSP Development Board Reference Manual, ver. 6.0.1,

August 2006.

[2] Q. Liu and S. W. Ellingson, “Method of High-Speed Data Acquisition and Continuous

Data Transfer using AlteraR© StratixR© II EP2S60 DSP Development Board,” Internal

Tech. Rep., Virginia Polytechnic Institute and State University, VA, June 14 2009. [on-

line] http://www.ece.vt.edu/swe/eta.

[3] Altera Corporation, CIC MegaCore Function User Guide, ver. 8.0, May 2008.

[4] Altera Corporation, Understanding CIC Compensation Filters, ver. 1.0, April 2007.

12

A FPGA Firmware

The FPGA firmware is written in Verilog HDL. The Altera R© NCO MegaCore R© function

is used to generate the local oscillator, the AlteraR© LMP MULT MegaCore R© function is

used for mixers, the Altera R© CIC Compiler MegaCore R© function is used to implement the

CIC filters, and the Altera R© FIR Compiler MegaCore R© function is used to implement the

CIC Compensation filters.

The following firmware is for ADC-A. The ADC-B firmware is identical, except that

the ADC pin assignments are changed, and the line “assign ssd = {ssdreg, 8’b1110 1000};”
should be replaced with “assign ssd = {ssdreg, 8’b1110 0000};” to make the seven-segment

display U13 show “b” instead of “A”.

13

Listing 1: receiver.v

// ===

// Developed by Q. Liu <qianliu@vt.edu > in 2009

// ===

module receiver(clk120M , clk3750K , a2dc , fctrl , datu , ssd);

// ------------- Port Definition ---------------

input clk120M;

input clk3750K;

input [11:0] a2dc;

input [3:0] fctrl;

output [15:0] datu;

output [15:0] ssd;

// ------------ Intermediate Variable -----------

reg [31:0] phi_inc;

reg [11:0] fcos , fsin; // NCO output

wire [23:0] xi1 , xq1; // I24+Q24 @ 120 MSPS

wire [33:0] xi2 , xq2; // I34+Q34 @ 3.75 MSPS

wire [6:0] xi3 , xq3; // I7+Q7 @ 3.75 MSPS

reg [3:0] swfreq;

reg [7:0] ssdreg;

// ---

// Frequency Control

// ---

parameter FREQ0 = 4’h0 ,

FREQ1 = 4’h1 ,

FREQ2 = 4’h2 ,

FREQ3 = 4’h3 ,

FREQ4 = 4’h4 ,

FREQ5 = 4’h5 ,

FREQ6 = 4’h6 ,

FREQ7 = 4’h7 ,

FREQ8 = 4’h8 ,

FREQ9 = 4’h9 ,

FREQa = 4’hA ,

FREQb = 4’hB ,

FREQc = 4’hC ,

FREQd = 4’hD ,

FREQe = 4’hE ,

FREQf = 4’hF;

always @(negedge fctrl [0]) begin

swfreq [0] <= ~swfreq [0];

end

14

always @(negedge fctrl [1]) begin

swfreq [1] <= ~swfreq [1];

end

always @(negedge fctrl [2]) begin

swfreq [2] <= ~swfreq [2];

end

always @(negedge fctrl [3]) begin

swfreq [3] <= ~swfreq [3];

end

always @(posedge clk120M) begin

case(fctrl)

FREQ0: begin

phi_inc <= 32’d62634940; // 1.75 MHz

ssdreg <= 8’b1000_0001; // "0"

end

FREQ1: begin

phi_inc <= 32’ d187904819; // 5.25 MHz

ssdreg <= 8’b1100_1111; // "1"

end

FREQ2: begin

phi_inc <= 32’ d313174699; // 8.75 MHz

ssdreg <= 8’b1001_0010; // "2"

end

FREQ3: begin

phi_inc <= 32’ d438444578; // 12.25 MHz

ssdreg <= 8’b1000_0110; // "3"

end

FREQ4: begin

phi_inc <= 32’ d563714458; // 15.75 MHz

ssdreg <= 8’b1100_1100; // "4"

end

FREQ5: begin

phi_inc <= 32’ d688984337; // 19.25 MHz

ssdreg <= 8’b1010_0100; // "5"

end

FREQ6: begin

phi_inc <= 32’ d814254217; // 22.75 MHz

ssdreg <= 8’b1010_0000; // "6"

end

FREQ7: begin

phi_inc <= 32’ d939524096; // 26.25 MHz

ssdreg <= 8’b1000_1111; // "7"

end

15

FREQ8: begin

phi_inc <= 32’ d1064793975; // 29.75 MHz

ssdreg <= 8’b1000_0000; // "8"

end

FREQ9: begin

phi_inc <= 32’ d1190063855; // 33.25 MHz

ssdreg <= 8’b1000_1100; // "9"

end

FREQa: begin

phi_inc <= 32’ d1315333734; // 36.75 MHz

ssdreg <= 8’b1000_1000; // "A"

end

FREQb: begin

phi_inc <= 32’ d1440603614; // 40.25 MHz

ssdreg <= 8’b1110_0000; // "b"

end

FREQc: begin

phi_inc <= 32’ d1565873493; // 43.75 MHz

ssdreg <= 8’b1111_0010; // "c"

end

FREQd: begin

phi_inc <= 32’ d1691143373; // 47.25 MHz

ssdreg <= 8’b1100_0010; // "d"

end

FREQe: begin

phi_inc <= 32’ d1816413252; // 50.75 MHz

ssdreg <= 8’b1011_0000; // "E"

end

FREQf: begin

phi_inc <= 32’ d1941683132; // 54.25 MHz

ssdreg <= 8’b1011_1000; // "F"

end

endcase

end

// --

// Tuner (12 bits 2’s complement output)

// --

nco0 tuner0 (

.phi_inc_i (phi_inc),

.clk (clk120M),

.reset_n (1’b1),

.clken (1’b1),

.fsin_o (fsin),

.fcos_o (fcos),

.out_valid ()

);

16

// --

// Complex Mixer

// --

mixer baseI (

.clock (clk120M),

.dataa (a2dc),

.datab (fsin),

.result (xi1)

);

mixer baseQ (

.clock (clk120M),

.dataa (a2dc),

.datab (fcos),

.result (xq1)

);

// --

// Decimation CIC Filter @ 120 MHz

// --

cicfir dnfirI (

.clk (clk120M),

.clken (1’b1),

.reset_n (1’b1),

.in_data (xi1 [22:9]) ,

.in_valid (1’b1),

.out_ready (1’b1),

.in_error (2’b00),

.out_data (xi2),

.in_ready (),

.out_valid (),

.out_error ()

);

cicfir dnfirQ (

.clk (clk120M),

.clken (1’b1),

.reset_n (1’b1),

.in_data (xq1 [22:9]) ,

.in_valid (1’b1),

.out_ready (1’b1),

.in_error (2’b00),

.out_data (xq2),

.in_ready (),

.out_valid (),

.out_error ()

);

17

// --

// Compensation FIR Filter @ 3.75 MHz

// --

compfir firI (

.clk (clk3750K),

.reset_n (1’b1),

.ast_sink_data (xi2 [32:19]) ,

.ast_sink_valid (1’b1),

.ast_source_ready (1’b1),

.ast_sink_error (2’b00),

.ast_source_data (xi3),

.ast_sink_ready (),

.ast_source_valid (),

.ast_source_error ()

);

compfir firQ (

.clk (clk3750K),

.reset_n (1’b1),

.ast_sink_data (xq2 [32:19]) ,

.ast_sink_valid (1’b1),

.ast_source_ready (1’b1),

.ast_sink_error (2’b00),

.ast_source_data (xq3),

.ast_sink_ready (),

.ast_source_valid (),

.ast_source_error ()

);

// Data Format Conversion

assign datu [15] = 1’b0;

assign datu [14] = ~xq3 [6];

assign datu [13:8] = xq3 [5:0];

assign datu [7] = 1’b0;

assign datu [6] = ~xi3 [6];

assign datu [5:0] = xi3 [5:0];

// Seven -Segment Display

assign ssd = {ssdreg , 8’b1110_1000 };

endmodule

18

B Data Acquisition Script

Listing 2 is Python code that runs on PC for the data capture. Users can also use other

languages (i.e., C/C++, etc.) to write their own code to receive the UDP packets.

19

Listing 2: server.py

===

Developed by Q. Liu <qianliu@vt.edu > in 2009

===

from socket import *

from ctypes import *

import binascii

Set the socket parameters

host = ‘192.168.1.213 ’

port = 1739

addr = (host , port)

reclen = 1468

Set the packet parameter

PacketNum = 8000

Set the socket parameter

BufferSize = reclen*PacketNum

Create the socket

UDPSock = socket(AF_INET , SOCK_DGRAM)

Set options

UDPSock.setsockopt(SOL_SOCKET , SO_RCVBUF , BufferSize)

UDPSock.setsockopt(SOL_SOCKET , SO_REUSEADDR , 1)

Create a binary file

filename = ‘test.dat’

FILE0 = open(filename , ‘wb’, 0)

================ Receive messages =================

for j in range(0, looptime*PacketNum):

data ,address = UDPSock.recvfrom(reclen , 0)

FILE0.write(data)

UDPSock.close ()

FILE0.close()

================= Post -processing =================

FILE1 = open(‘test.dat’, ‘rb’);

data_bytes = FILE1.read(reclen*PacketNum*looptime)

FILE1.close()

data_hex = binascii.hexlify(data_bytes)

FILE2 = open(‘test.txt’,‘w’)

FILE2.write(data_string)

20

FILE2.close()

print(‘Complete!’)

21

C Data Analysis Scripts

These scripts read the file generated by the Python capture code (see Appendix B), and

then process the data according to the application objectives. Both can run under either

MATLAB 7.1 or Octave 3.0.1. The first script (listing 3) generates two eye diagrams. The

second script (listing 4) computes the averaged PSD using a 2048-point FFT.

22

Listing 3: glitch.m

% ===

% Developed by Q. Liu <qianliu@vt.edu > in 2009

% ===

clear all;

close all;

disp(‘reading ... ’);

fid = fopen(‘test.txt ’, ‘r’); % open the file

data = fscanf(fid , ‘%2X’); % array of 4-byte words (2 samples each)

fclose(fid);

disp(‘analyzing ... ’);

L = max(size(data));

index = 1 : L;

i0 = data(find(mod(index ,4)==1)); % demultiplex into 1-byte values

q0 = data(find(mod(index ,4)==2));

i1 = data(find(mod(index ,4)==3));

q1 = data(find(mod(index ,4)==0));

num = 1 : L/2;

i = zeros(L/2, 1);

i(find(mod(num ,2)==1)) = i0; % remultiplex into a single pair of

i(find(mod(num ,2)==0)) = i1; % arrays , representing ‘‘I’’ and ‘‘Q’’

q = zeros(L/2, 1); % respectively

q(find(mod(num ,2)==1)) = q0;

q(find(mod(num ,2)==0)) = q1;

disp(’plot eye diagram ...’);

lp = 100;

times = 200;

eyediagram(i(1:lp*times), lp , lp);

xlabel(’Time [samples]’);

ylabel(’Sample value’);

eyediagram(q(1:lp*times), lp , lp);

xlabel(’Time [samples]’);

ylabel(’Sample value’);

return;

23

Listing 4: spectrum.m

% ==

% Developed by S. W. Ellingson <ellingson@vt.edu > in 2009

% Modified by Q. Liu

% ==

clear all;

close all;

disp(‘reading ... ’);

fid = fopen(‘test.txt ’, ‘r’); % open the file

data = fscanf(fid , ‘%2X’);

fclose(fid);

disp(‘analyzing ... ’);

LFFT = 2048;

L = max(size(data));

index = 1 : L;

i0 = data(find(mod(index ,4)==1));

q0 = data(find(mod(index ,4)==2));

i1 = data(find(mod(index ,4)==3));

q1 = data(find(mod(index ,4)==0));

num = 1 : L/2;

i = zeros(L/2, 1);

i(find(mod(num ,2)==1)) = i0;

i(find(mod(num ,2)==0)) = i1;

q = zeros(L/2, 1);

q(find(mod(num ,2)==1)) = q0;

q(find(mod(num ,2)==0)) = q1;

block = floor((L/2)/ LFFT);

r = i(1: LFFT*block) + sqrt (-1)*q(1: LFFT*block);

r = r - mean(r); % remove DC

Lr = max(size(r));

SY = zeros(LFFT ,1);

QE = 1.761 + 6.0206*7;

w = -1.875 : 3.75/(LFFT -1) : 1.875;

m=0;

for l = 1:LFFT:Lr ,

m=m+1;

y = r(l:l+LFFT -1);

Y = fftshift(fft(y));

PY = abs(Y).^2;

24

SY = SY+PY;

plot(w, 20* log10(SY/m)-QE);

drawnow;

end

xlim ([-1.875 1.875]);

xlabel(‘Frequency [MHz]’);

ylabel(‘PSD [dB/1.8 kHz]’);

return;

25

	1 Introduction
	2 System Architecture
	3 Firmware
	4 Demonstration
	A FPGA Firmware
	B Data Acquisition Script
	C Data Analysis Scripts

