Station-Level Calibration for LWA-1

Steve Ellingson

ellingson@vt.edu

Bradley Dept. of Electrical & Computer Engineering Virginia Tech

June 1, 2009

Station-Level Calibration (SLC) Docs

- LWA Memo Series
 - [149] S. Ellingson, Performance of Simple Delay-and-Sum Beamforming Without Per-Stand Polarization Corrections for LWA Stations, Jan 2009.
 - [147] S. Ellingson, Some Initial Results from an Electromagnetic Model of the LWA Station Array, Dec 2008.
 - [142] S. Ellingson, Sky Noise-Induced Spatial Correlation, Oct 2008.
 - [141] S. Ellingson, Interaction Between an Antenna and a Shelter, Sep 2008.
 - [140] S. Ellingson, Polarimetric Response and Calibration of a Single Stand Embedded in an Array with Irregular Wavelength-Scale Spacings, Aug 2008.
 - [138] S. Ellingson, Single-Stand Polarimetric Response and Calibration, Jun 2008.
 - [136] S. Ellingson, Dispersion in Coaxial Cables, Jun 2008.
 - [129] S. Ellingson, Interaction Between an Antenna and a Fence, Mar 2008.
 - [115] S. Ellingson, Dispersion by Antennas, Dec 2007.
 - [75] S. Ellingson, A Design Study Comparing LWA Station Arrays Consisting of Thin Inverted-V Dipoles, Jan 2007.
 - [73] S. Ellingson, Effective Aperture of a Large Pseudorandom Low-Frequency Dipole Array, Jul 2007
 - [67] S. Ellingson, Collecting Area of Planar Arrays of Thin Straight Dipoles, Dec 2006.
- LWA Engineering Memos

[SLC0004] S. Ellingson, References Applicable to Station-Level Calibration, Jul 2008. [SLC0003] S. Ellingson, Suggestions for Experimental Verification of Instrumental Responses, Oct 2008.

Other References Cited

[155] J. Hartman, Antenna pattern measurements from a two-element interferometer, Apr 2009.

[R+04] A.E.E. Rogers *et al.* (2004), "Calibration of Active Antenna Arrays Using a Sky Brightness Model," *Radio Science*, 39.

[WB06] S.J. Wijnholds & A.-J. Boonstra (2006), "A Multisource Calibration Method for Phased Array Radio Telescopes," *Proc. 4th IEEE Workshop Sensor Array & Multichannel Processing*, Waltham, MA.

Definitions

• Steering Vector. The set of antenna terminal voltages resulting from a plane wave from a given direction at a given frequency.

Beamforming coefficients are the elements of the conjugated steering vector.

• Array Manifold: Complete set of steering vectors as a function of direction and frequency.

Mutual coupling between antennas is accounted for here.

• Instrumental Response: The transfer function from antenna terminal voltages to digitizer inputs.

Includes FEE, RPD, SEP, ARX. Potential for coupling here, too.

- Station-Level Calibration: Process of:
 - Determining array manifold and instrumental responses
 - Implementing corrections (either "on the fly" or post-acquisition)
- Purpose of SLC is to:
 - Enable "go to" beam pointing
 - Know (accurately estimate) beam sensitivity and shape
 - Make sense of TBN/TBW output

Why SLC is Complicated

- Mutual coupling makes gain and phase of each antenna significantly different. In fact, difference is a function of direction [149,147,67]
- Gain and phase of every cable is different due to unequal lengths.
- Dispersion by antennas [115] and cables [136].
 - LWA uses delay & sum BF, but delay depends on frequency
- LWA-1 has no "built-in" or "active" calibration sources. All we have is:
 - "As built" information
 - External non-cooperative sources (e.g., astronomical, RFI)
 - Estimates or extrapolations from physical models
 - Electromagnetics (Moment method models)
 - Temperature

Why SLC is Simple

- Ignoring mutual coupling in beamforming does not significantly degrade sensitivity or polarization performance* [149]
 - High confidence in this finding, but comprehensive follow-up is appropriate (ongoing work)
 - Mutual coupling <u>does</u> distort main lobe and jostle sidelobes, but neither effect is of much consequence for LWA-1 science goals
- Experience shows that instrumental responses can be extremely stable
 - E.g., gain to within fractions of a percent over days
 - Rapid update is not necessary or desirable
- LWA-1 dipoles see a very bright sky background
 - This is almost as good as having embedded calibration sources
 - LWA-1 also sees a few bright discrete sources and various anthropogenic (typically, broadcast) sources with high S/N – these are "calibrators of opportunity"

* *Note:* This is not the same as the statement "mutual coupling does not degrade performance"! In some cases performance is degraded, and in other cases it is improved [73]. The finding here is simply that performance after <u>optimal</u> correction for mutual coupling is about the same as performance after <u>no</u> correction for mutual coupling

What is Calibrated & How

- No correction for antenna coupling
 - Appears unnecessary for BFUs (see previous slide)
 - Can be implemented post-acquisition for TBW/TBN
- Equalization of instrumental gain is distributed across ARX and DP
 - Jointly optimized for optimum sensitivity-linearity tradeoff ("GNI") by MCS
- Inverse cable dispersion filter
 - Implemented in "fine delay" FIRs in DP's BFUs.
 - Convolved with delay filter impulse response
- No correction for antenna dispersion
 - Beamformer outputs will have a combined antenna dispersion in them. *N.B. Pulsar & coherent transient enthusiasts*
 - Upgrades:
 - Estimate of combined antenna dispersion as observation metadata
 - Per-antenna dedispersion, using (again) BFU fine delay FIRs

What is Calibrated & How

continued from previous slide...

- Opportunity for conversion to "standard" polarizations via postbeamforming 2x2 matrix multiply in DP BFUs.
 - Perfect at one frequency, "reasonable" over wide ranges [140,138]
- Calibration updates implemented at integration period boundaries (or even more slowly), rather than continuous updating
- Managed by MCS
 - Users may modify or override calibration "policies" (caveats)
 - Calibration state preserved as observation metadata

How Calibration Parameters are Determined

- "As built" (install-time) measurements and simple assumptions
 - e.g., cable lengths, types, depths, gain/phase vs. frequency, model for parameter variation with depth and temperature; Analogous parameters for FEE, ARX; Simple models for antenna gain/phase patterns
 - This may be all we ever need for to meet LWA-1 science goals
- Refine instrumental gain estimates from sky power measurement
 - Use TBN/TBW
 - Comparison to sky model & daily trend
 - Also useful for detection of deterioration and malfunction
 - Currently studying a method for extracting instrumental phases using dipole correlations with sky model. Analogous to a procedure proposed for LOFAR [WB06], but believed to be better approach for LWA.
- Refine path (manifold+instrumental) phase estimates from noncooperative sources when possible/practical (more on this later)
 - Use TBN/TBW
 - Initially for verification
 - Eventually might be used to refine calibration parameters but we should not be distracted by this possibility

How Calibration Parameters are Determined

continued from previous slide...

- Sanity check whenever possible (good use of extra beams)
 - Periodic measurement of beam patterns using drift scans against bright discrete sources
 - Periodic measurement of beam patterns using sky model e.g., [R+04]
 - Periodic measurement of beam sensitivity by switching between hot/cold regions
 - These things will work better at higher frequencies than lower frequencies
- If/when necessary, fill gaps and make refinements using:
 - EM model e.g., for embedded antenna gain/phase patterns, which will be very difficult to get by any other method
 - Empirical models e.g., for cable gain vs. temperature

Array Manifold Issues

- As explained previously: There will be large differences between antennas due to mutual coupling, but not much to be gained by knowing the details or doing anything about it!
- Bigger concern: Proximity of shelter and fence.
 - Large <u>structured</u> effect on antenna patterns possible [129,141]
 - Extent to which this is a problem for beam pattern/polarization is not yet known (work underway)
- Antenna pattern measurement data for LWA-1?
 - Already understood what is going on qualitatively and anecdotally
 - Exhaustive measurements not needed for LWA-1 science or calibration
 - A few carefully-selected measurements will useful for validating EM models & refining instrumental calibration
 - The emphasis/priority should be on measurements of beam shape

Antenna Patterns Measured in situ

- 2-way interferometry on bright source(s) [SLC0003, 155, 142]
 - Provides gain only over track of source
 - Provides only phase *difference*
 - Very poor performance at low elevations [155], where need this data is the greatest
 - Basic technique requires long baseline ("outrigger" antenna) to decorrelate sky noise, which reduces sensitivity and contributes bias otherwise [142]
- Situation may actually be better using just station elements
 - Desensitization due to sky noise correlation is worse, but integration time can be longer; many re-looks possible (daily)
 - Compensation for sky noise correlation bias is possible using a sufficiently good sky model ([111] may already be good enough)
 - 32,640 baselines: Highly overdetermined, however solution may involve a difficult phase unwrapping procedure
- EM modeling is a better approach at this phase in the project
 - <u>An EM model validated by just a few measurements will be far more</u> <u>useful than a much larger set of measurements without a model.</u>
 - Many pitfalls, computationally intensive, but we have a pretty good "leg up" on this already

Other Calibration Opportunities

- Pulsars
- Active sun
- Broadcast TV
 - We have very good understanding of ATSC and associated propagation (Lee Dissertation, 2008)
 - Complicated by terrain and ionospheric multipath scattering
- TV broadcast reflected from meteor ionization trails ("meteor scatter")
 - Useful primarily for phase calibration (but that's where the greatest need is...)
- We should not be distracted by these possibilities until we have sufficient operational experience with LWA-1

Pending & Future SLC Tasks

- Anticipating effect of fence and shelter for proposed site design
- Anticipating effects of antenna dispersion after beamforming
 - Considering also efficacy of pre-beamforming correction
- A_e/T_{sys} estimates
 - Confirm findings of [149] (i.e., that "simple" beamforming is OK) for broader range of pointings
 - Commissioning preparation
- EM model for LWA-1
 - A validated model is desired for observation planning, data interpretation & LWA-2 design
 - Ultimately may be useful in commissioning, calibration, understanding sidelobes
- in situ array manifold / instrumental phase calibration techniques

Additional Information / Backup Slides

Virginia Tech's Role in LWA

- VT subcontract accounts for about 6% of ONR LWA funding (FY06-FY08)
- Current Emphasis in LWA Project:
 - Station-Level Calibration (SLC)
 - Monitoring & Control System (MCS)
 - MCS Data Recorder (MCS-DR)
- Past / Recurring Efforts
 - Systems Architecture / Systems Engineering
 - Rapid Prototyping / Equipment Loan: ARX, Digitizer, "S60" Data Recorder
 - Data Analysis, RFI Mitigation, Transient Search Software
- Faculty:
 - Steve Ellingson
 - Cameron Patterson (MCS-DR; starting Summer 2009)
- Students
 - Currently 3 Ph.D. engineering students funded by project: Harun, Liu, Wolfe
 - Recent VT engineering graduates who have done LWA-relevant work: Lee (Ph.D. 2008), Hasan (Ph.D. 2009), Taylor (M.S., 2006)

Why Can't We Do It Like...

• LOFAR:

- Most similar to LWA in terms of array manifold issues
- Architecturally very different from LWA beamforming done in narrow channels as opposed to "delay and sum". Overall bandwidths much less.
- Availability of information on their approach is sketchy
- LWDA, ETA:
 - Similar to LWA in terms of array manifold issues, but much smaller
 - Very low sensitivity and spatial resolution; crude calibration OK.
- PAPER, MWA:
 - Have simple array manifolds since elements/tiles are spaced far apart
- Clark Lake, FLIRT:
 - Elements individually had large S/N (Large conical spirals, Bays of 8 FW dipoles) and relatively simple manifold (regular spacings -> orderly coupling)
 - Superior beam sensitivity and resolution
 - In this case, relatively straightforward to get instrumental response by phasing up on strong sources

Stability of Instrumental Response (ETA)

Ellingson, Simonetti, and Patterson (2007), IEEE Trans. Ant & Prop., 55, 826.

Effect of Mutual Coupling on Station Beam Collecting Area

Circular 100 m dia station, Irregular geometry, Min. 4 m between stands Simple dipoles, 38 MHz

			Single Stand [m ²]			[m ²] Array		
Ground	Load	θ	A_e^e	A_e^d	A^i_e	$A_{e}^{d}/256$	$\Delta\%$	e_{ap}
PEC	100Ω	0°	23.78	25.49	23.97	25.96	+2%	0.84
		$45^{\circ}\mathrm{E}$	8.41	8.01	7.53	10.16	+27%	0.47
		$45^{\circ}\mathrm{H}$	20.00	19.26	20.49	14.25	-26%	0.66
			Single Dipole, Simple model	Single Dipole, Rx-mod NEC2	Single Dipole, e Tx-moo NEC2	Array, , Rx-mod de NEC2 (stand average	e	Aperture Efficiency
			LWA Me	mo 73		Effect of mutual coupling		
lia								×ттт

Effect of Mutual Coupling on Dipole Voltages

distance from array centroid $[\lambda]$

- Shown here: Magnitude and phase of current induced at each feedpoint (moment method)
- Only a "small" effect on mail lobe shape, since phase "errors" have low bias
- Effect on sidelobe levels unknown, but probably significant
- These values "rumble" as a function of direction of arrival

LWA Memo 67

Polarization & Dispersion Calibration

- Beams should be not only "full bandwidth" (78 MHz) and fully independent, but also well calibrated. Xpol!
- "Perfect" calibration possible, but only for a single frequency and beam pointing, or if FIR filters of infinite length are available
- Cable dispersion further complicates this:

$$\tau_d = (4.78~\mathrm{ns}) \left(\frac{l}{100~\mathrm{m}}\right) \left(\frac{f}{10~\mathrm{MHz}}\right)^{-1/2}$$

 "Reasonable" performance seems possible with M=16 (@ 98 MSPS) FIR filters

LWA Memo 138

Effect of Fence

- Security fence required around array effect?
- Biggest impact is for H-plane pattern, when collinear (as shown in these moment method simulations)
- < 1 dB gain variation, but oscillates
- Effect depends on ground type

