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1 Summary

This memo makes some suggestions about how to go about measuring the responses of prototype
LWA components, including antennas (ANT), FEE, cables, and receivers (ARX). As noted previously
by others, antenna patterns can be determined using observations of strong discrete sources by a
two-element interferometer; the relevant math is shown and various caveats are noted. It is shown
that only the magnitude of the antenna pattern, and not the phase, can be determined using the
proposed method.

2 Data Model

2.1 Plane Wave Incident on Antennas

In the following model, the Cartesian coordinate system x-y-z is positioned such that the origin is in
the plane of the array, with the x and y axes lying in the plane of the array and the z axis pointing
toward the zenith. The zenith angle θ is measured from the z axis.

Consider a monochromatic plane wave incident from direction in which r̂, a unit vector with
tail fixed to the origin, points. Let s(RF )(t, ω′) be the waveform associated with this plane wave,
measured at the origin, and let the frequency of this waveform be ωc +ω′. ωc is intended to represent
the center of the observed bandpass, whereas ω′ is intended to represent an offset from the center
frequency that will ultimately become the baseband frequency after downconversion. Thus:

s(RF )(t, ω′) = S(ω′)ej(ωc+ω′)t (1)

where S(ω′) is the baseband magnitude and phase of the waveform.

Let the position of the nth antenna in the array be pn, a vector whose tail is fixed at the origin.
The waveform at this point in space is

s(RF )
n (t, ω′) = s(RF )(t− τn(t), ω′) = S(ω′)ej(ωc+ω′)(t−τn(t)) (2)

where τn(t) is the geometrical delay associated with pn and is given by:

τn(t) =
−r̂(t) · pn

c
(3)

where c is the speed of light and we explicitly show the time dependence of r̂ to underscore the fact
this is time-varying since the sky appears to move relative to the array. It will be convenient to
express τn(t) in the form of a polynomial. This can be done using a Taylor series expansion around
time t = t0 as follows:

τn(t) = τn(t0) +

[

d

dt
τn(t)

]

t0

(t− t0) +
1

2

[

d2

dt2
τn(t)

]

t0

(t− t0)
2 + ... (4)

To compute the first derivative of τn(t) we note that pn can be expressed as

pn = x̂dn cosφn + ŷdn sinφn (5)

where dn is the distance of the associated antenna from the origin, and φn is the associated radial
coordinate in the xy plane. Similarly,

r̂(t) = x̂ cosφ(t) sin θ(t) + ŷ sinφ(t) cos θ(t) + ẑ cos θ(t) (6)

Thus

τn(t) = −
dn

c
sin θ(t) cos [φ(t) − φn] (7)
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d

dt
τn(t) = −

dn

c

[

dθ

dt
cos θ(t) cos [φ(t) − φn] −

dφ

dt
sin θ(t) sin [φ(t) − φn]

]

(8)

For later notation convenience, let this quantity be known as αn, which is understood to be time-
varying. Note that dθ/dt and dφ/dt are both upper-bounded by the sky’s apparent rate of rotation,
which is simply 2π radians per day, or 7.27 × 10−5 rad/s. Thus, we can assume the upper bound
for αn when φ(t) = φn is also the upper bound regardless of φ(t); so that we need only to consider
the first term to determine this bound. Assuming dn < 1 km (probably sufficient for the proposed
experiments as explained in a later section), we find that αn < 2.42 × 10−10. Comparing the first
two terms of the Taylor series for the minimum expected delay of ≈ (4 m)/c (assuming minimum
4 m spacing between stands):

αn∆t

τn(t0)
<
(

0.0182 s−1
)

∆t (9)

where ∆t ≡ t− t0. Thus, we see that under these assumptions the second term of the Taylor series
becomes important at the 1% level at ∆t ∼ 549 ms.

Moving on to the third term of the Taylor series:

d2

dt2
τn(t) = −

dn

c

(

d2θ

dt2
cos θ(t) −

(

dθ

dt

)2

sin θ(t)

)

(10)

where we have once again limited ourselves to the case φ(t) = φn with the understanding that this
leads to bounds applicable independent of φ(t), as discussed above. The factor d2θ/dt2 is largest at
the celestial poles, where dθ/dt oscillates between zero and the sky apparent rate of rotation every 6
hours. Thus, the magnitude of (d2θ/dt2) cos θ(t) is loosely upper-bounded by (7.27 × 10−5 rad/s) /
( 6 h ) = 3.37× 10−9 rad/s2. Similarly, the magnitude of (dθ/dt)2 sin θ(t) is loosely upper-bounded
by (7.27 × 10−5 rad/s)2 = 5.28 × 10−9 rad/s2. Thus the ratio of the maximum magnitudes of the
second and third terms of the Taylor series is bounded as follows:

(1.44dn × 10−17 rad/s2)(∆t)2

αn∆t
<
(

5.95 × 10−5 s−1
)

∆t (11)

Thus, we see that under these assumptions the third term of the Taylor series becomes important
at the 1% level at ∆t ∼ 168 s. In conclusion, we shall use the approximation

τn(t) ≈ τn0 + αn(t− t0) (12)

where τn0 ≡ τn(t0), and we assume this is valid for ∆t up to 168 s.

Substituting the approximation of Equation 12 into Equation 2, we have:

s(RF )
n (t, ω′) = S(ω′)ej(ωc+ω′)(t−τn0−αn(t−t0)) (13)

Rearranging factors:

s(RF )
n (t, ω′) = ejωcte−jωcαnte−jωcτ̃n0S(ω′)e−jω′τ̃n0e+jω′(1−αn)t (14)

where τ̃n0 ≡ τn0 − αnt0. This can be generalized into an expression for signal of any bandwidth
simply by integrating over ω′:

s(RF )
n (t) ≡

∫ +∞

−∞

s(RF )
n (t, ω′)dω′ (15)

Thus:

s(RF )
n (t) = ejωcte−jωcαnte−jωcτ̃n0

∫ +∞

−∞

S(ω′)e−jω′τ̃n0e+jω′(1−αn)tdω′ (16)
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Figure 1: System Model.

The integral can be solved using the inverse Fourier transform through the change of variables
u′ ≡ ω′(1 − αn):

s(RF )
n (t) = ejωcte−jωcαnte−jωcτ̃n0

1

1 − αn

∫ +∞

−∞

S

(

u′

1 − αn

)

e−ju′τ̃n0/(1−αn)e+ju′tdu′ (17)

s(RF )
n (t) = ejωcte−jωcαnte−jωcτ̃n0

2π

1 − αn
F−1

{

S

(

u′

1 − αn

)

e−ju′τ̃n0/(1−αn)

}

(18)

s(RF )
n (t) = 2πejωcte−jωcαnte−jωcτ̃n0s

(

(1 − αn)t−
τ̃n0

1 − αn

)

(19)

where s(t) ≡ F−1 {S(ω)}; i.e., the time domain form of the full-bandwidth incident waveform.
Recalling that |αn| < 2.42 × 10−10, the following approximation can be made with negligible error:

s(RF )
n (t) = 2πejωcte−jωcαnte−jωcτ̃n0s (t− τ̃n0) . (20)

Signals will typically be downconverted to a center frequency of zero for subsequent processing,
resulting in the baseband representation:

s(RF )
n (t)e−jωct = 2πe−jωcαnte−jωcτ̃n0s (t− τ̃n0) (21)

Canceling of the factor e−jωcαnt is desirable if the phase ωcαn∆t is significant, as signals obtained
from different antennas will not be coherent with respect to each other otherwise. For 88 MHz and
αn = 2.42 × 10−10, this phase changes by 1◦ in ∆t = 130 ms. Therefore, it should be dealt with.
We have:

sn(t) ≡ s(RF )
n (t)e−jωcte+jωc(αnt+τ̃n0)/(2π) = s (t− τ̃n0) (22)

where we have chosen to simultaneously cancel the nuisance phase factor e−jωcτ̃n0/(2π) since essen-
tially no additional work is required to do this.

Before moving on, we repeat that this is an approximation because the sky is moving with respect
to the array but only the lowest-order (linear) terms in the associated Taylor series expansion of
τn(t) have been taken into account. We use τ̃n0 ≡ τn0 − αnt0 (as opposed to simply τn0) to account
for phase error associated with the re-computation of the Taylor series expansion at each new t0,
and note that the above expression should not be assumed to be valid for more than ∼ 168 s at a
time; i.e., that τn0 and αn should be recomputed at least that often.

2.2 System Model

The system model is shown in Figure 1. Note that this is a frequency-domain model. Components
of the model are explained below.

4



• Sn(ω) ≡ F {sn(t)} = S(ω)e−jωτ̃n0 , the incident electric field spectrum at position pn, having
units of V m−1 Hz−1/2.

• Nn(ω) represents the external (hopefully, sky) noise measured at the terminals of the antenna
at position pn, having units of V m−1 Hz−1/2. Note this noise is modified from the noise which
actually appears at the antenna terminals, since it is subjected to the same downconversion
and fringe stopping operations experienced by the signal of interest.

• An(r̂, ω+ωc) describes the antenna (ANT) response in the direction r̂, and has units of meters
(i.e., effective length) such that the output has units of V Hz−1/2.

• Zn(ω + ωc) is internally generated noise, referenced to the input of the FEE and having units
of V Hz−1/2. It is assumed that this noise originated from the FEE and dominates over the
noise contribution of the ARX. Note this noise is modified from the noise which is actually
generated, since it is subjected to the same downconversion and fringe stopping operations
experienced by the signal of interest.

• Cn(ω + ωc) describes the response of cables and associated hardware (RPD), and is unitless.

• Rn(ω + ωc) describes the combined response of the front end electronics (FEE) and receiver
(ARX), and is unitless.

• Xn(ω) is the captured signal after downconversion to a center frequency of zero and fringe
stopping (per Equation 22), having units of V Hz−1/2.

Thus we have

Xn(ω) = Rn(ω + ωc)Cn(ω + ωc) [An(r̂, ω + ωc)Sn(ω) +Nn(ω) + Zn(ω)] (23)

The explicit display of frequency dependence becomes tedious, so we shall use the equivalent “short-
hand” expression:

Xn = RnCn [An(r̂)Sn +Nn + Zn] (24)

Correlation between two signals Xn and Xm is defined as follows:

Xnm ≡ 〈XnX
∗

m〉 (25)

where the superscript asterisk denotes conjugation and the angle brackets denote time-averaging (i.e.,
integration). As noted above, integration for more than ∼ 168 s is not recommended. Assuming
the internal and external noise is uncorrelated, and assuming that the noise from any given FEE is
uncorrelated with the noise from any other FEE, we find using the model of Equation 24 that:

Xnm = RnR
∗

mCnC
∗

m

(

An(r̂)A∗

m(r̂)|S|2e−jω(τ̃n0−τ̃m0) + 〈NnN
∗

m〉
)

(26)

3 Determination of Model Parameters

We now consider how to determine the model parameters appearing in Equation 26.

The cable and receiver responses Cn and Rn can be determined experimentally before observing.
It is important that this measurement be coherent (i.e., include phase), since it is important to
capture the delay and dispersion characteristics. The simplest approach is simply to use a vector
network analyzer to measure s12. Cable can also be measured in terms of s11 by short circuiting the
opposite end and then accounting for the round trip (vs. one-way) propagation and the reflection
coefficient of −1. An alternative to a vector network analyzer that uses the same data acquisition
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Figure 2: One possible method for determining the complete (magnitude and phase) response of a
component.

used for interferometry is shown in Figure 2. In this approach, a noise source generates Ntest, the
response to be determined is H, and the acquired data are:

X1 = HGtNtest (27)

X2 = GcNtest (28)

where Gc and Gt are the “coupled” and ”through” port responses of the coupler. Thus,

X12 = G∗

cGtHσ
2
test (29)

where σ2
test =

〈

|Ntest|
2
〉

. Thus:

H =
X12

G∗

cGtσ2
test

(30)

and G∗

cGt can be determined using the exact same expression for a separate measurement in which
the device under test is replaced with a through connection; i.e., H = 1.

Next, consider the noise term 〈NnN
∗

m〉. Since we intend to be sky noise dominated, Nn and
Nm are guaranteed to be correlated. Thus, 〈NnN

∗

m〉 does not necessarily approach zero with in-
creasing integration. If the sky noise temperature were constant with respect to r̂, this would result
in 〈NnN

∗

m〉 having a large constant value, and thus would be a simple bias that could be easily
removed. However, the presence and sidereal motion of other sources – the Galactic plane in partic-
ular – causes the associated bias to be time-varying as well as potentially large. Unfortunately, this
correlation bias may not be sufficiently suppressed by fringe stopping for the desired source (e.g.,
Cas A). However, the degree of suppression offered by fringe stopping for distributed sources can be
increased by increasing the separation between the antennas until the associated waveform at the
two antennas becomes decorrelated. This is equivalent to spatially resolving the nuisance feature.
Since the spatial resolution of a two-element interferometer is λ/D, a feature having angular extent
ψ is resolved for a baseline D > λ/ψ. To resolve sources down to 10◦ with factor-of-10 overkill
requires D = 1.72 km at 10 MHz, 452 m at 38 MHz, 232 m at 74 MHz, and 195 m at 88 MHz. If
this condition is satisfied, it is probably safe to assume 〈NnN

∗

m〉 is negligible; however it would be
prudent to evaluate this both through sky-model simulation and experimentally.

Finally, consider the incident power density factor |S|2 in Equation 26. This has units of
V2 m−2 Hz−1. By plane wave theory, we can relate this to the flux P of the source being observed
(e.g., Cas A), which has units of W m−2 Hz−1, through the plane wave relationship P = |S|2/(2η)
where η ≈ 377 Ω is the wave impedance in free space. Thus, |S|2 = 2ηP .

We can now calculate the following quantity related to the antenna response:

An(r̂)A∗

m(r̂) =
Xnm

RnR∗

mCnC∗

m|S|2e−jω(τ̃n0−τ̃m0)
−

〈NnN
∗

m〉

|S|2e−jω(τ̃n0−τ̃m0)
(31)
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If the antennas are identical and oriented in exactly the same way, we find:

An(r̂)A∗

m(r̂) = |An(r̂)|2 (32)

In other words, the best we can do is to find the magnitude of the pattern; the phase of the pattern
is not available. The units of |An(r̂)| are m2; however this is effective length squared, which is not
the same as the effective (collecting) area, Ae. Furthermore, it is often desired to express antenna
pattern magnitude in dBi. To accomplish this, we note that the power delivered by the antenna is

PA =
|Ei|2

2η
Ae(r̂) (33)

where Ei is the electric field spectral density vector. This can also be determined in terms of the
impedance of the antenna impedances ZA = RA + jXA and load impedance RL as:

PA =
1

2

|Ei · le(r̂)|
2RL

|ZA +RL|2
(34)

where le(r̂) is the vector effective length of the antenna. (This expression is easily derived using
the Thevenin equivalent circuit model of a receive antenna with RL connected at the terminals.)
Equating the two expressions above we find:

Ae(r̂) = η
|êi · le(r̂)|

2RL

|ZA +RL|2
(35)

where êi is the unit-magnitude vector describing the polarization of Ei. Separately (also from the
Thevenin equivalent circuit model), note that:

|An(r̂)|2 =
1

4
|êi · le(r̂)|

2
(

1 − |Γ|2
)

(36)

where

Γ ≡
ZA −RL

ZA +RL
(37)

Thus:

|An(r̂)|2 = |êi · le(r̂)|
2 R2

L

|ZA +RL|2
(38)

substituting into Equation 35, we have:

Ae(r̂) =
η

RL
|An(r̂)|2 (39)

Since the gain G (over isotropic) of an antenna is 4πAe/λ
2, we find:

G(r̂) =
4πη

RLλ2
|An(r̂)|2 (40)

4 Suggested Test Procedure

The following sequence of tasks is suggested:

1. Measure Rn for all FEE+ARX combinations to be employed. Compare to predicted values.

2. Measure Cn for all cables to be employed. Compare to predicted values. In particular, compare
observed and predicted dispersion.

3. If possible, determine RnCn for all n after field deployment, to confirm that it has not changed
since the above measurements.
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4. Determine Nn for each antenna/channel separately, using Equation 24 with a model for the
frequency response of the antenna (e.g., using NEC2). Compare to established values for Nn.
Both the frequency response and diurnal variation are of interest. In this way, antenna models
can be validated, which is useful for the next step.

5. It would be useful to perform an stability test at this point to determine the length of time
over which all channels are gain- and phase-stable. This may be somewhat difficult to do in

situ considering sky-noise-dominated antennas are involved, because the spatial distribution
of noise on the sky is constantly changing. Upon installation, it could be useful to do the
following test: Disconnect cables from FEEs and connect them together to the output ports
of single splitter, which is fed by a noise source. (If suitable differential “plumbing” can be
constructed, FEEs can be included in this test.) Instead of correlation, compute < Xn/Xm >
pairwise among the cables; this gives magnitudes that are nominally unity and phases that are
nominally zero. This test can also be repeated using antennas with the sky as the stimulus,
however in that case only the magnitudes are expected to be nominally constant.

6. Using Equation 26 without tracking, and preferably when any bright discrete sources are at
low elevation or below the horizon, determine 〈NnN

∗

m〉. The idea is to do this at times when
the contribution from any potential “|S|2” (Cas A, Cyg A, etc) is negligible. This should
probably be done for a few times during the day. Compare to simulation if possible. Compare
〈NnN

∗

m〉 to |S|2 for proposed source(s) to determine if 〈NnN
∗

m〉 is negligible, or if it must be
dealt with explicitly (by including it in the calculation) or by suppressing it (by increasing the
separation between antennas).

7. Determine G(r̂) for a track through the sky using Cas A with Equations 31 and 40. This is
of course a function of frequency; however the priority is higher frequencies where concerns
about the antenna pattern are greatest. Both of the raw polarizations of the antenna are of
interest.
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5 Document History

• Version 2 (October 1, 2008): Cleaned up various mathematical details and revised the model,
which was not quite correct in the previous version. No conclusions are affected.

• Version 1 (July 2, 2008): First version.
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