

AIPY:AIPY:
AAstronomicalstronomical
IInterferometry innterferometry in
PyPythonthon

Aaron ParsonsAaron Parsons
Univ. of CaliforniaUniv. of California

BerkeleyBerkeley

http://setiathome.berkeley.edu/~aparsons/aipyhttp://setiathome.berkeley.edu/~aparsons/aipy

The Precision Array for Probing
the Epoch of Reionization (PAPER)

21 cm EoR (z=9.5)

CMB Background

Confusion Noise

Galactic Synchrotron

Galactic Free-Free

Extragalactic Free-Free

A. Parsons1, D. Backer1, R. Bradley2,5, C. Parashare2,
N. Gugliucci2, E. Mastrantonio5, C. Carilli6, A. Datta6,
J. Aguirre3,4, M. Lynch7, D. Herne7, T. Colegate7

1 U. of California, Berkeley, 2 U. of Virginia, 3 U. of
Colorado, Boulder, 4 U. of Pennsylvania, 5 NRAO,
Charlottesville, 6 NRAO, Socorro, 7 Curtin U., Perth,
Australia

The PAPER Architecture
● Non-tracking Crossed Dipoles
● Wide Bandwidth (125-205 MHz)
● Movable (unburied TV cable)
● Smooth Beam

● Flexible FPGA-based
● Packetized Correlator
● Full-Stokes
● Large # Ants (scalable)
● Wide Band (up to 200 MHz)
● 2048 Channel Polyphase Filter Banks
● 4-bit Cross-Multipliers

● Snapshot Model-based Imaging/Calibration
● Bootstrap Imaging/Calibration
● W Projection, Multi-frequency Synthesis
● Python-Based, Ties in MIRIAD, FITS, HEALPIX
● Measurement Equation-based Parameter Fit

Sample Data:
1 Day, 1 Baseline
PAPER Green Bank

TV/Aircraft TXFringes (Cas,Cyg,Sun)

Crosstalk
Beating sources

Intermittent TX

Satellite TX

Phase Amplitude (log)

Another Imaging Package... Why?
New problems to solve: New tools available:

● Wide fields of view
● Large relative bandwidths
● Huge numbers of antennas
● Non-tracking primary beams
● Real-time processing
● Source separation
● Ionospheric distortion

● W projection
● Delay imaging
● Parallel processing/clusters
● Open-source software
● More sophisticated programming models
 (object-oriented, run-time compiled)

Python:
● Interpreted (up to 5x more productive
than compiled languages, according to
Burton Group study)
● Object-Oriented
● Readable
● Fast, high-level data types
● Large community of programmers
● Fast-growing community of
numerical/scientific/astronomy
programmers

● PyFITS
● PyRAF
● SciPy
● NumPy
● PyEphem
● Pylab
● OBIT
● CASA
● MeqTrees

● Generally, only a small fraction of code
needs to run fast
● Python's profiler can tell you where the
bottlenecks are
● Bottlenecks can be recoded in C/C++/
Fortran and wrapped into Python
● NumPy, the foundation of
numerical/vectorized processing in Python, is
coded in C and runs on average only 1.5
times slower than pure C
● You should only be allowed to worry about
speed while your code is actually running

Performance:

What AIPY Is (and Isn't)
AIPY is:

AIPY isn't:

● A module adding tools for interferometry to Python (not visa versa)
● An amalgam of pure-Python and wrappers around C++ and Fortran
● Object-Oriented
● A collection of low- to mid-level operations (you write the program)
● A toolkit (i.e. a grocery store, not a restaurant)
● In beta release (frequent updates/bug-fixes/changes)

● A solution (it just helps you find it)
● A one-stop shop (it makes use of other open-source projects)
● A replacement for other interferometry packages
● Wedded to a file format (but only MIRIAD-UV, FITS currently supported)

Philosophical Pedantry:
● Follow the (abbreviated) Zen of Python:

● Explicit is better than implicit
● Simple is better than complex
● Complex is better than complicated
● Special cases aren't special enough to break the rules
● Practicality beats purity
● There should be one (and preferably only one) obvious way to do it,
 although that way may not be obvious at first unless you're Dutch
● Now is better than never
● In the face of ambiguity, refuse the temptation to guess

● Don't handicap the programmer; allow them all the rope they want
● Don't hide data; return it (or at least grant access) at every turn

The Toolbox
MODULES:
ant/sim/fit

const
coord

deconv
healpix

img
loc

map
miriad

optimize
src

----3rd party----
ephem

pyfits
numpy

pylab/matplotlib

geometry, phase / gain, amplitude / parameter fitting
physical constants
coordinate transforms (eq, ec, ga, precession, etc.)
deconvolution (clean, lsq, mem, anneal)
wrapper around healpix C++ (Max-Planck-Institut)
imaging (gridding/weighting, W projection, beam calc)
machinery for importing user-defined AntennaArrays
generation of all-sky maps, faceting
interface to MIRIAD files
parameter fitting, optimization code
lists of known sources and parameters
--
astrometry (relied upon heavily)
reading/writing FITS files
numerical python (fundamental to everything)
plotting, map projection

and example scripts for:
manipulating/visualizing MIRIAD files, flagging RFI, filtering out crosstalk,
fitting parameters, simulating arrays, making/viewing all-sky maps,
phasing to/filtering out sources, imaging, etc.

Interferometry Fundamentals
Our Parameterized Measurement Equation:

Flat Field (Small Angle) Approximation:

● (u,v) coordinates represent the Fourier transform of the angular sky coordinates (l,m)
● Angular power spectrum directly measured in UV (visibility) domain
● Inverse 2D FFT of gridded UV visibilities yields dirty image (convolved with synthesized PSF)
● Synthesized PSF is inverse 2D FFT of visibility weights

Building a Simulator

AntennaArray
● set_jultime(...)
● gen_phs(...)
● gen_uvw(...)
● sim(...)

Antenna
● x,y,z
● dly,off
● bp_r,bp_i

Beam
● response(...)
● <coeffs>

SrcCatalog
● compute(...)
● get_crds(...)

RadioFixedBody
● compute(...)
● ra,dec
● str,index
● angsize

RadioSpecial
● compute(...)
● str,index
● angsize

Antenna
● x,y,z
● dly,off
● bp_r,bp_i

YourModule.py
● get_aa(...)
● gen_uvw(...)
● get_src_prms(...)

Modeling Beam of Dipole + Flaps

40dB zenith to horizon, 60 degree FWHM
Model accurate to 0.1% in main lobe
Smooth spatially and vs. frequency

Challenge 1: Starting from Scratch

Bootstrapping:
● Direct, imperfect, iterative
● Do not rely (excessively) on priors
● Take advantage of wide bandwidth
● Address degeneracies one at a time

“Sometimes you can't get started because you can't get started” – Don Backer

● Self-calibration needs single-source data
● Source isolation requires calibration
● Parameter fitting needs a good starting guess
● How do we get to first base?

The Problem:

1-Dimensional Imaging
XRFI:
● Remove model sky
● Statistical thresholding
● Manual flagging

DELAY TF:
● iFFT of passband
● Convolved by
“delay beam”

1D CLEAN:
● Compensate for
holes in passband
● Retain passband
shape for self-cal

Ex: 1-D Imaging in AIPY
import aipy, numpy, sys
freqs = numpy.arange(.075, .225, (.150 / 1024))
aa = aipy.loc.get_aa('loc_key', freqs)
src = aipy.src.get_src('cyg')

def isolate_src(mir_file, preamble, data, flags):
uvw, t, (i,j) = preamble
if i == j: return preamble, data, flags
aa.set_jultime(t)
src.compute(aa)
try:

flags = numpy.logical_not(flags).astype(numpy.float)
gain = numpy.sqrt(numpy.average(flags**2))
if gain == 0: return preamble, data, flags
kernel = numpy.fft.ifft(flags)
data = numpy.where(flags, 0, data)
data = aa.phs2src(data, src, i, j)
dly_img = numpy.fft.ifft(data)
dly_img, info = aipy.deconv.clean1d(dly_img, kernel)
dly_img += info['res'] / gain

except(aipy.ant.PointingError): return preamble, data, flags
dly_img[2:-2] = 0
data = numpy.fft.fft(dly_img)
return preamble, data, flags

infile = aipy.miriad.UV(sys.argv[-1])
outfile = aipy.miriad.UV(sys.argv[-1] + '.cyg', status='new')
outfile.init_from_uv(infile)
outfile.pipe(infile, mfunc=isolate_src, raw=True)

Bring in AIPY functionality

Use an AntennaArray that you've built in loc_key.py

Phase to Cygnus A (defined in src.py or loc_key.py)

Define a function to map data from an input file to output

Set the current time (inefficient)

Compute current source position (inefficient)

Calculate gain of “delay beam”

Calculate shape of “dirty delay beam”
Blank out RFI

Phase data to Cygnus A
Calculate “dirty delay image”

Deconvolve dirty image by dirty beam

Add back in residuals with appropriate gain

Blank out delays that aren't close to zero

Convert back to frequency domain

Pipe data into new file through the function we made

Delay/Fringe Rate Transform
● Two sources can show up at same delay for a given baseline
● Over a time interval (say, 1 hr), can be differentiated by fringe rates (see below)
● To prevent excessive blurring (changing fringe rate w/ time) best to phase to source
before filtering
● Clean delay axis before iFFT of time axis
● Clean fringe rate axis to account for flagging of entire integrations

Challenge 2: Imaging Fidelity
● Correct for wide-field effects (W projection)
● Correct for sampling effects (CLEAN, MEM)
● Correct for non-tracking primary beam
● Fundamentally incorrect, but can do increasingly
better job with good sky & antenna models

Wide Fields and W Projection
● Strong source far from phase center may have sidelobes in area of interest
● Need a point-source on which to pin a “dirty beam”: W projection (Cornwell et al.)
● Enhances fidelity of forward imaging at moderate computational cost

Standard Gridding W Projected Gridding, Src 30° off center

Imaging with Non-Tracking Beams

Position-Dependent Weighting in Data Dirty Beam with Incorrect Weighting

● Only possible to weight for one track through primary beam
● Dirty beam weighted for phase center imperfectly deconvolves away from center
● Can evade problem with snapshot imaging

PAPER Example: Cyg A, Cas A, MEM

Challenge 3: Proper Imaging
● Many parameters are strongly degenerate,
requiring simultaneous fitting to tease
them apart.
● Proper image deconvolution involves using
the full measurement equation.
● Various parameters (ionosphere,gain,xtalk)
change on different timescales.
● Huge parameter space, different variance
in parameters -> simulated annealing?
● If parameter space is not smooth,
this is not an easy problem.

● Classic inverse problem: easier to guess
the answer, check, and correct than to
solve
● Simulate on reasonable time-scales
● Maximize fidelity of forward imaging
(make better guesses)
● For distributed flux, avoid pixelization
effects (compute using spherical
harmonics)

150 MHz PGB-8
● 3 days of 8-element single polarization data
● Spans 138.8 to 174.0 MHz
● Delay/Fringe subtraction of Sun, Cyg, Cas, Vir, Crab
● Map has constant flux scale (but changing noise level)
● Imaged on 15° grid

Removing Top 5 Sources

More to Come!
● Parallelization (running on clusters, probably using pp.py)
● Model distributed flux in spherical harmonics (faster)
● Close the loop on proper imaging
● Improved estimation of image variance for MEM
● Real-time system for modeling ionosphere, crosstalk, gain fluctuations
● Developing tools for communicating with other packages/file formats
● Building a community of developers/users

AIPY:AIPY: AAstronomical stronomical IInterferometry in nterferometry in PyPythonthon

http://setiathome.berkeley.edu/~aparsons/aipyhttp://setiathome.berkeley.edu/~aparsons/aipy

