TRANSIENT SEARCHES WITH MWA

UC Berkeley

with David Kaplan (UW-Milwaukee) Steven Tingay, Tara Murphy, Martin Bell, Antonia Rowlinson, James Miller-Jones, and the MWA collaboration

BLIND TRANSIENT PI SEARCHES

Grad student

BLIND TRANSIENT SEARCHES

Bower et al. (2007) VLA archival observations at 5 and 8.4 GHz 944 epochs, 10 transient candidates

BLIND SEARCHES ARE HARD

Frail et al. (2012) Probably only 1 is real 3 are marginal

RARE EVENTS HAPPEN OFTEN

Long tail, many trials Non-Gaussian artifacts

at low thresholds and with large number of beams (cf §3) it would be prudent to set thresholds beyond mere statistical considerations¹⁴. A threshold of 9 or even 10σ may be appropriate. Alternatively, an immediate verification of a transient by deeper observation or a confirmation by observations at other wavelengths would allow detection of transients closer to threshold.

Frail et al. (2012)

PUSHING SENSITIVITY AND AREA

HOW TO FIND THE GOOD STUFF

A Calvin and Hobbes Collection by Bill Watterson

- Sources with known positions that may flare (e.g. pulsars, flare stars, blazars)
- Transients detected at other wavelengths (commensal / triggered) or with other methods (e.g. GRBs, GW and neutrino sources)
- Multi-epoch with cadence matched to sources of interest (e.g. TDEs), and conservative thresholds (10σ)

KNOWN SOURCES

Stack of 1700 pulsars, including 50 detections 20σ detection Kaplan et al. in prep

RAPID RESPONSE

Kaplan+15, ApJL, 814, 25 23 s - 30 min after SGRB Fainter than 3 Jy on a timescale of 4 s Can be used to provide constraints on GRB models

RAPID RESPONSE

Kaplan+15, ApJL, 814, 25 23 s - 30 min after SGRB Fainter than 3 Jy on a timescale of 4 s Can be used to provide constraints on GRB models

COORDINATED

GP survey iPTF 45 nights, Jul 1 - Aug 15 MWA 18 epochs x 1 hour (14 x 4 min snapshots) every ~2 days 118, 154, 185 MHz |b|<20°, 15° <l< 50°

MWA IPTF EPOCH 1

MURCHISON WIDEFIELD ARRAY LIMITS ON RADIO EMISSION FROM ANTARES NEUTRINO EVENTS

S. CROFT^{1,2}, D. L. KAPLAN³, S. J. TINGAY^{4,5}, T. MURPHY^{5,6}, M. E. BELL⁷, A. ROWLINSON⁷, FOR THE MWA COLLABORATION

S. CROFT^{1,2}, D. L. KAPLAN², S. J. TINGAY^{1,3}, T. MURPHY^{1,3}, M. E. BELL¹, A. ROWLINSON¹, FOR THE MWA COLLABORATION
S. ADRIÁN-MARTÍNEZ⁸, M. AGERON¹², A. ALBERT⁹, M. ANDRÉ¹⁰, G. ANTON¹¹, M. ARDID⁸, J.-J. AUBERT¹², B. BARET¹³,
J. BARRIOS-MARTÍI¹⁴, S. BASA¹⁵, V. BERTIN¹², S. BIAGI¹⁶, R. BORMUTH^{17,18}, M. C. BOUWHUIS¹⁷, R. BRUINI^{17,19}, J. BRUNNER¹²,
J. BUSTO¹², A. CAPONE^{20,21}, L. CARAMETE²², J. CARR¹², T. CHIARUSI²³, M. CIRCELLA²⁴, A. COLEIRO¹³, R. CONIGLIONE¹⁶,
H. COSTANTINI¹², P. COYLE¹², A. CREUSOT¹³, I. DEKYSER²⁵, A. DESCHAMPS²⁶, G. DE BONIS^{20,21}, C. DISTEFANO¹⁶,
C. DONZAUD^{13,27}, D. DORNIC¹², D. DROUHIN⁹, T. EBERL¹¹, I. EL BOJADDAINI²⁸, D. ELSÄSSER²⁹, A. ENZENHÖFER¹¹, K. FEHN¹¹,
I. FELIS⁸, P. FERMANI^{20,21}, L. A. FUSCO^{23,30}, S. GALATA¹³, P. GAY³¹, S. GEISSELSÖDER¹¹, K. GEYER¹¹, V. GIORDANO³²,
A. GLEIXNER¹¹, H. GLOTIN³³, R. GRACIA-RUIZ¹³, K. GRAF¹¹, S. HALLMANN¹¹, H. VAN HAREN³⁴, A. J. HEIBOER¹⁷, Y. HELLO²⁶,
J. J. HERNÁNDEZ-REY¹⁴, J. HÖSSL¹¹, J. HOFESTÄDT¹¹, C. HUGON^{35,36}, C. W JAMES¹¹, M. DE JONG^{17,18}, M. KADLER²⁹,
O. KALEKIN¹¹, U. KATZ¹¹, D. KIESSLING¹¹, P. KOOIJMAN^{17,37,19}, A. KOUCHNER¹³, M. KRETER²⁹, I. KREYKENBOHM³⁸,
V. KULIKOVSKIY^{16,39}, C. LACHAUD¹³, R. LAHMANN¹¹, D. LEFÉVRE²⁵, E. LEONORA^{32,40}, S. LOUCATOS⁴¹, M. MARCELIN¹⁵,
A. MARGIOTA^{23,30}, A. MARINELLI^{42,43}, J. A. MARTÍNEZ-MORA⁸, A. MATHIEU¹², T. MICHAEL¹⁷, P. MIGLIOZZI⁴⁴, A. MOUSSA²⁸,
C. MUELLER²⁹, E. NEZRI¹⁵, G. E. PĂVĂLAŞ²², C. PELLEGRINO^{23,30}, C. PERRINA^{20,21}, P. PIATTELLI¹⁶, V. POPA²², T. PRADIER⁴⁵,
C. RACCA⁹, G. RICCOBENE¹⁶, K. ROENSCH¹¹, M. SALDAÑA⁸, D. F. E. SAMTLEBEN^{17,18}, A. SÁNCHEZ-LOSA¹⁴, M. SANGUNETI^{35,36},
P. SAPIENZA¹⁶, J. SCHMID¹¹, J. SCHNABEL¹¹, F. SCHÜSSLER⁴¹, T. SEITZ¹¹¹, C. SIEGE¹¹, M. SPURIO ANTARES COLLABORATION

A. KLOTZ^{47,48}, M. BOER⁴⁹, A. LE VAN SUU⁵⁰, FOR THE TAROT COLLABORATION

C. AKERLOF⁵¹, W. ZHENG¹, FOR THE ROTSE COLLABORATION

ANTARES

ANTARES directional trigger reduces atmospheric contamination to 2%

Steve Croft, UC Berkeley - S@LF II, ABQ, 2015 Dec 4 - NSF AAG 1412421

26

No counterparts to ~19 mag No counterparts to ~100 mJy $L_{150 \text{ MHz}} \lesssim 10^{29} \text{ erg s}^{-1} \text{ Hz}^{-1}$ if at < 20 Mpc If binary neutron star coalescences, progenitors must be at z > 0.2

MULTI-MESSENGER TRIGGERED FOLLOWUP

MULTI-MESSENGER TRIGGERED FOLLOWUP

NEXT STEPS

Shadowing Parkes for FRBs (expect 0.5 Jy in 0.5 s image for bright FRBs) Triggered neutrinos, GW X-ray binaries, AGN

MWA Phase II Double longest baseline 2x better localization 5x lower confusion

AGN DOMINATE

(even for SKA)

MWA

- FOV 1000 sq. deg
- RMS ~ 20 mJy / beam
- Thousands of AGN in each image
- Hundreds detected at > 10 sigma
- Typical cadence ~1 month

TIME DOMAIN

INSPIRAL SIGNATURES

- Unlikely to catch brief flares hours before merger
- Could maybe see modulation of emission at earlier times

O'Shaughnessy+11 Kaplan+11 Croft, O'Shaughnessy & Kaplan in prep.