Transients at Low Radio Brequencies

Sarah Burke-Spolaor National Radio Astronomy Observatory

Fender et al (2015)

Unique regimes: Slow and Fast Transients	 Physics: * Intervening media * Huge brightness temperatures 	 Instruments/strategy: Phased/beamformed Computation heavy Enormous data sets Real-time identification
	★ CATACLYSMS!	 ★ Commensal ★ Automated classification/ machine learning
	 ★ Ejecta afterglows ★ Relativistic jets ★ Kinetic feedback measurements 	★ Image plane

trategy:

- ★ FOV
- ★ Sensitivity
 - ★ Bandwidth
 - ★ Collecting area
 - ★ Freq. selection
- ★ Cadence

- ★ FOV
- ★ Sensitivity
 - ★ Bandwidth
 - ★ Collecting area
 - ★ Freq. selection
 - ★ Sample time
 - ★ Channelization
- ★ Polarization
- ★ Localization
- ★ Huge supercomputer

So what do we know so far?

Slide credit: N. Kudryavtseva

Stewart et al. (2015)

Christmas eve 2011, North (celestial) Pole

Stewart et al. (2015)

The future...

AT 1 GHz:

- ★ 17 detected (10 published)
- $\star f = 0.7 1.5 \text{ GHz}$
- * 2500-10000/sky/day
- ★ Extragalactic
- ★ ~50% scattered, $<\tau>$ ~ 7 ms

 Jupiter: magnetospheric cyclotron masers

 Extrasolar planets: same processes?

Greissmeier et al. (2007)

• LIGO/Virgo: detects a signal

 Prompt radio signal delayed by up to minutes, hours

• NS-NS merger, Cosmic string cusps

Yancey et al. (2015)

Transient science

- Huge range of targets
- Afterglows, jet phenomena, exoplanets, intergalactic medium, and more
- Discoveries are commencing!
- Unexplored parameter space: coherent one-off events at any distance