Searching Past the Confusion: Stokes V Imaging of the Transient Sky

Marin M. Anderson (Caltech)

G. Hallinan, S. Bourke, M. Eastwood, R. Monroe, H. Vedantham, D. Wang, D. Woody, and the OVRO-LWA collaboration

Science at Low Frequencies II December 4, 2015

Searching Past the Confusion: Stokes V Imaging of the Transient Sky

Target transients

The Owens Valley Long Wavelength Array

Stokes V imaging

V. OVRO-LWA pilot survey

Image credit: G. Hallinan

Science at Low Frequencies II December 4, 2015

The target low frequency sky – short-duration, coherent transients

Extrasolar space weather

- Stellar flares and CMEs
- Exoplanet magnetospheric emission
- ...events indicative of stellar magnetic activity and their impact on planetary companions.

Image: C. Carter and G. Hallinan

The low frequency (<100 MHz) sky is the ideal place for monitoring extrasolar space weather events

The low frequency (<100 MHz) sky is the ideal place for monitoring extrasolar space weather events

The low frequency (<100 MHz) sky is the ideal place for monitoring extrasolar space weather events

Why monitor the low frequency sky for extrasolar space weather events?

To understand the implications of stellar activity and planetary magnetic fields on exoplanet atmospheres and habitability.

The target low frequency sky – short-duration, coherent transients

- Stellar flares and CMEs
- Exoplanet magnetospheric emission

...events indicative of stellar magnetic activity and their impact on planetary companions.

2 GCRT

Extrasolar

space weather

As yet unidentified, bright, pulsing transient in the Galactic center – 100% circularly polarized.

Figure: G. Hallinan

The target low frequency sky – short-duration, coherent transients

- Stellar flares and CMEs
- Exoplanet magnetospheric emission

...events indicative of stellar magnetic activity and their impact on planetary companions.

Extrasolar

space weather

As yet unidentified, bright, pulsing transient in the Galactic center – 100% circularly polarized.

Theoretically predicted, coherent low frequency counterpart to GW event.

Binary neutron star mergers

Prompt, coherent low frequency radio emission detectable following GW or GRB trigger.

I. Low frequency transient sky II. OVRO-LWA III. Stokes V imaging IV. Pilot transient survey

3

OVRO-LWA – a transient machine!

OVRO-LWA – a transient machine!

OVRO-LWA – a transient machine!

Transients in Stokes V – a search down Easy Street.

Transients in Stokes V – a search down Easy Street.

Not-so-

Antenna beam

Need to understand antenna beam pattern to high degree of accuracy, including polarization orthogonality between crossed dipoles.

Polarized calibrator

Requires strongly polarized source whose emission dominates the flux in the beam for a given integration.

Stokes – Geometric correction

Calculation of LWA dipole beam

Antenna modeling by Dave Woody

Three Modes of Operation

7-day continuous 'buffer mode' - respond to GW triggers

OVRO-LWA Pilot Survey

Simultaneous radio and optical monitoring of ~1000 nearby stellar systems.

19/20

Summary

20 / 20

Full Stokes

