Pulsars and Fast Transients with the MWA

Steven Tremblay - CAASTRO/Curtin

Curtin

University

Pulsars and Fast Transients with the MWA

MWA Voltage Capture (VCS)

MWA Voltage Capture

MWA Voltage Capture

MWAVCS Science

Publications from the VCS commissioning:

Millisecond pulsar PSR J0437-4715 (Bhat et al. 2014, ApJ, 791, L32) VCS system description + pulsar detections (Tremblay et al. 2015, PASA, 32, 5) Crab giants from MVA+Parkes observations (Oronsaye et al. 2015, ApJ, 809, 51)

Currently active programs (2015):

MSP observations Targeted searches (pulsars and RRATs of interest) FRB searches

Longer-term programs (2016+)

Routine observations of PTA MSPs Continued searches for FRBs A low-frequency census southern pulsars Polarimetric studies of pulsars Pulsar emission mechanism studies

Profit

VCS Recording + reprocessing = multiple science projects using the same data

Pulsars and Fast Transients with the MWA

MWA Single Pulses

Prospects for the Detection of Fast Radio Bursts with the Murchison Widefield Array

Cathryn M. Trott^{1,2}, Steven J. Tingay^{1,2} and Randall B. Wayth¹

International Centre for Radio Astronomy Research, Curtin University, Bentley WA 6845, Australia

α	Scatter	Coherent	Incoherent	Imaging
-2	Zero	88 ± 19	16 ± 8	38 ± 12
-1	Zero	23 ± 9	$3.5^{+3.0}_{-3.5}$	$8.5^{+5.0}_{-6.0}$
0	Zero	$5.6^{+4.4}_{-5.6}$	$0.7^{+1.5}_{-0.7}$	$1.7^{+1.8}_{-1.7}$
-2	High	$8.3^{+4.9}_{-5.9}$	$1.7^{+1.8}_{-1.7}$	$3.3^{+3.0}_{-3.3}$
-1	High	$2.5^{+3.0}_{-2.5}$	$0.4^{+1.0}_{-0.4}$	$0.8^{+1.5}_{-0.8}$
0	High	$0.6^{+1.4}_{-0.6}$	$0.1^{+0.2}_{-0.1}$	$0.2^{+0.5}_{-0.2}$
$N_{noise} (> 7\sigma)$		2×10^5	0.5	300
$N_{noise} (> 8\sigma)$		80	2×10^{-4}	0.2

Fast Radio Burst nals, presumed to be discovery of six high scope suggests that I Widefield Array (M

Table 2: Expected number of fast transient detections per 10-hour day with S/N \geq 7 for each observing mode of the MWA, for zero-scatter and high-scatter scenarios, assuming ten hours per night of zenith observing. Uncertainties describe the 68% confidence intervals for a single night of observing. Also listed are the expected number of detections due to noise, N_{noise}. For the coherent case, a higher threshold of 8σ is more feasible.

Science at Low Frequencies II

MWA Single Pulses

Science at Low Frequencies II

PSR J1921+2153

Science at Low Frequencies II

PSR J1731-4744

Science at Low Frequencies II

MWA and Crab Giant Pulses

Science at Low Frequencies II

MWA and Crab Giant Pulses

- ~45 minutes of MWA & Parkes observations of Crab
- 2075 Pulses detected at Parkes
- 55 Pulses detected at the MWA
- 23 Coincident Pulses (~51% from MWA P.o.V.)
- Spectral index range
- Measure of variable scattering

MWA and Crab Giant Pulses

0.7 0.6

 $\overline{}$

0.8

Pulsars and Fast Transients with the MWA

MWA and Periodic Emission

PSR J0437-4715

Scintillation

Science at Low Frequencies II

Science at Low Frequencies II

Science at Low Frequencies II

Archived MWA Voltages

Integrated rms of archived VCS data (Oct. 9 2015)

Longer-term programs (2016+) Routine observations of PTA MSPs[†] Continued searches for FRBs[†] A low-frequency census southern pulsars Polarimetric studies of pulsars Pulsar emission mechanism studies[†] VLBI with GMRT Non-standard correlator 'modes'

[†] MWA TAC dependant

Pulsars and Fast Transients with the MWA

Thank you

Science at Low Frequencies II

Science at Low Frequencies II

Why parabolic arcs?

Consider two coherent patches on thin screen

• Relation of
$$f_{
m v}$$
 to $f_{
m t}$: $f_{
m
u} = \eta f_{
m t}^2$

• η is curvature of parabola

$$\eta = \frac{D_{\rm s}}{2 c} \frac{\lambda^2}{V_{\rm eff}^2 \cos^2 \alpha}$$
$$D_{\rm s} = D s (1 - s)$$

 Measurement of η yields distance s

185 MHz (Incoherent Search)				
α	No Scatter	High Scatter		
-2	8	0		
-	2	0		
0	0	0		
+0.4	0	0		

295 MHz (Incoherent Search)					
α	No Scatter	High Scatter			
-2	8				
-	3	0			
0		0			
+0.4	0	0			