Dark Age Telescope – λ21cm power spectrum beyond z~15 –

L. Greenhill, D. Price, H. Garsden, A. Fialkov (Harvard) G. Taylor, J. Dowell (UNM) B. Barsdell (Nvidia)

DAT Summary

- 21 cm cosmology: z > 15
- Focus: Dark Age (DA), Cosmic Dawn (CD) unique physics
 - test theoretical predictions of fundamental processes before the Epoch of Reionization (EOR)
 - quantify initial conditions for interpretation of EOR studies
 - infer conditions backward into the DA
- Instrument: power spectrum array
 - maximally redundant, large-N_A configuration (HERA-like)
 - aperture proximate to a non-redundant, large-NA compact beamforming array (unique)
 - enables external calibration leverages long baselines & large-N_B
 - enables monitoring of ionosphere and high-fidelity estimation of sky model
- New direction at high redshift
 - orthogonal information w/r to 0-order mode experiments (LEDA, Bighorns, EdgesII)
- Most practical locations
 - Long Wavelength Array(LWA) stations
- LWA1 selected for proposal now in review
 - primary drivers: RFI above 75 MHz, ready infrastructure, extant LEDA systems
- Heritage: Large Aperture Experiment to Detect the Dark Age LEDA (sci/tech)

Price Sokolowski Monsalve talks

LEDA Radiometry

radiometry with interferometric calibration

Caltech **Owens Valley** 10 dipole **LEDA** Correlator **Radio Observatory** antennas **GPU** cluster (100 TF/s 240 Tb/s) LWA-OVRO ~ 212m 502 dipole antennas Google ear

Low-Freq. Sci II 15Dec02

Greenhill / Barsdell

Physics

• DAT will test theories of fundamental processes in the early universe.

Physics	Process	Effect	Observable
Wouthuysen-Field	Ly α coupling of	temperature	∃ signal @ z>15
effect	21cm → T _s ~T _k	contrasts	
Baryon Acoustic	Dark matter /	light halo star formation eff.	timing/shape of
Oscillations	baryon drift		signal
Black hole population growth	X-ray energy	hard X-rays heat	dilution of signal at
	deposition	less efficiently	"low" z
Feedback	Lyman-Werner field Spread of metals	light halo star formation eff.	timing/shape of signal
Dark matter	heating during	warm baryons	light haloes form
annihilation	dark age		fewer stars

e.g., Structure Depends on Hardness

courtesy A. Fialkov

e.g., Structure Depends on Hardness

Low-Freq. Sci II 15Dec02

courtesy A. Fialkov

A Proposed Configuration: NM

Very Large Array 🗃

Long Wavelength Array

DAT hexagon[¶] 127 ants. Ø120m 169 ants. Ø140m 217 ants. Ø160m 271 ants. Ø180m external cal: 4 LWA1 bms. plus 24 distributed ants.

 * Siting at LWA1 is under discussion with NRAO $^{\rm I}$ Assumes 2 λ spacing at 60 MHz (z=22.7)

DAT Specifications

Science band Cal. band	60-87 MHz (15-23) 30-87 MHz	
Nant	128 - 271 (+24)	
configuration	hexagonal, redundant + ext. dense array (LWA1)	
antenna-type	"regularized, horizon-blind LWA"	
max. spacing	120-180m	
min. spacing	2 λ @ 60 MHz	
Tsys	1200 - 3000 K (T _{rx} =500 K)	
Power (via LWA1 infrastructure)	< 7 kW	

Owen talk

Sensitivity for Minimum-sized DAT

128 ant. and Ø150m: 3000^h (2 yr) foreground filter: $k_{\parallel} > 0.08$

sensitive to LOS flucts. **only** "foreground brick," not wedge all spacings – efficient aperture

sim by D. Price using modified 21cmSense inset courtesy C. Trott

Sensitivity for LEDA-scale Array

128 ant. and Ø150m: 3000^h (2 yr) foreground filter: $k_{\parallel} > 0.08$ sensitive to LOS flucts. **only** "foreground brick," not wedge all spacings – efficient aperture

sim by D. Price using modified 21cmSense inset courtesy C. Trott

Analysis

- Goal: power spectrum in k_{\parallel}
- Calibration
 - "correct" bandpass cal. is paramount for foreground mitigation
 - Cuwarp or similar package (Mitchell et al. 08)
 - cross correlate DAT elements with LWA1 beams
 - instantaneous tracking of multiple calibrators
 - estimate dirx'n & frequency-dependent antenna gains
 - monitor ionosphere for quiescent times; apply rubber sheet if needed
 - exploit redundancy (OMNICAL)
- Foreground mitigation
 - peel bright point sources
 - partially peel of diffuse emission model DFT
 - delay filter (e.g., PAPER)

Line Lenc/Wayth talks

Summary

- Proposed Dark Age Telescope
 - z=15-23
 - $-\,$ power spectrum estimation along $k_{||}$
 - orthogonal extension to searches for sky-averaged spectra
 - LEDA, Bighorns, EDGESII
 - joint with a beamforming LWA station
 - transparently scalable w/ N_{A}
 - \odot LEDA FPGA/GPU architecture scales trivially to N_A>5000 w/o high cost (not limiting)
- Tests of basic physics, unique to DA and CD
 - Wouthuysen-Field effect
 - Baryon-dark matter drift (BAO)
 - Black hole population growth
 - Spread of metals, LW-feedback
 - Exotic sources of DA heating, e.g., dark matter annihilation

- end -