#### Francesco de Gasperin

**Leiden University** 

#### online version: bit.do/lowfreq

OFAR AST RON

#### Galaxy clusters at the lowest frequencies

Albuquerque - 3/12/2015.\* g

- Mass:  $M_{500} \sim 10^{13-15}$  solar masses
- Radius: few Mpc
- Galaxies: up to thousands

Dark matter (70-80%) Gas (20-30%) Galaxies (few %)

- plasma physics: what is the physics of shocks and turbulence in astrophysical plasmas?
- astrophysics: where does merger energy go? Halos/relics/tail are proxies to study the dynamics and fundamental properties of galaxy clusters.
- cosmology: do merger rate and cluster masses fit cosmological models? What can we learn on the properties of dark matter?

# Taxonomy of cluster-sources at low-frequency

Radio halo: central, unpolarized, Mpc-size
 turbulence (re)acceleration

- Radio relic: periferal, polarized, Mpc-size
  - shock (re)acceleration

Mergers

Radio phoenix: central, ~100 kpc-size
 - compression of old AGN lobes



# Relics: Mpc-long shock waves



**Double relics** (only 15 cases)

X-ray: XMM-Newton (Ebeling et al. 2013)

**Optical: SDSS** 

MACS|1752.0+4440

- Extended radio sources
- Cluster peripheral regions
- Low radio brightness •
- Steep Spectrum α < -1</li>
  Polarized 20-30%



# PSZIG108: spectral index



$$M = \sqrt{\frac{2\alpha_{\rm inj} + 3}{2\alpha_{\rm inj} - 1}}$$



# Phoenixes: reviving old plasma



Credits: Tom Jones



8 8 3

2

8

±

免

8

5 5

a

b

C

d



### PSZIG189: a merger

#### Two optical peaks, merger ~along LoS





### **PSZIG189**



#### WSRT 1.4 GHz

z = 0.12 $M = 3.4 \times 10^{14} M_{\odot}$ 

#### de Gasperin+ 15

#### VLA (B) 1.4 GHz



# PSZIG189: a relic?



- 1. No polarization
- 2. Very small
- 3. Very central
- 4. Very steep
- 5. No shock (well, not in the right place)
- 6. Spectral index not relic-like





# Birth of a radio phoenix: displaced (compressed?) by cluster weather



Chandra press release





#### Spectral evolution



#### The tail is ~500 Myr old

# The LOFAR LBA Survey

Beams: 4 (1 calibrator + 3 targets) Mode: LBA\_OUTER (4 deg FWHM) - SPARSE? Obs time: 8 hrs per pointing - total pointings: 3170

Frequency coverage: 42 - 66 MHz Resolution: 15" to 30" Noise level: 5-10 mJy (DIE) - 1 mJy (expected DDE)

LoLSS - Vs - VLSS 10 - 20 times better noise 2 - 3 times better resolution

### The LOFAR LBA Survey



#### The LBA Exploratory Survey: 24 pointings (160 sqdeg)

Virgo A (M87) LOFAR LBA (46 MHz) rms: 20 mJy/b beam: 16"x17" dyn range: 10,000

C

Expected flux: 3120 Jy Measured flux: 3004 Jy

- First evidence for varying Mach number in a merger shock.
- Smoking gun example that proves the existence of phoenixes.
- In the SKA era, LBA will keep LOFAR unique.
- Data at very low-freq (<100 MHz) are hardcore but doable.
- LOFAR LBA Sky Survey ready to start.

Francesco de Gasperin



#### International baseline imaging: M82 at 150 MHz

Star forming galaxy, 3.6 Mpc.

Resolution 0.3", image noise  $\sigma$ =0.15 mJy/beam.



10<sup>-1</sup>

 $10^{0}$ 

Freq. [GHz] 10<sup>1</sup>

HST (NASA, ESA, STScI/AURA).

#### Some results

- Detect 16 objects (7 new)
- Resolve SNR shells
- Probe ISM structure through low-freq turnovers in SNR spectra.

Varenius et al. (2015), A&A.

 $10^{2}$ 

# Relics: theory to observations



Radio Relics are powered by **Shock waves** which form in the Intra-cluster Medium during **mergers** (low Mach numbers  $\approx$  2-4, average magnetic field  $\approx$  1 uG)

#### The most luminous relics

