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Clusters of Galaxies

Chandra 900 ks image of Perseus cluster, unsharp-masked at right (Fabian et al. 2006)
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Clusters of Galaxies

MS0735+7421 in radio (red) and X-rays (blue) – Gitti et al.  

800 kpc
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Thermal Emission from Clusters
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Peck & Taylor (2001)

Spectral index map from 
1.3/5 GHz VLBI observations

free-free optical depth:

tff ~ T-3/2 ne2n-2 d

Ne ~ 8 x 1022 cm-2

ionization ~ 10%

Free-free absorption in 
1946+708
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Hydra A

Taylor (1996)

core:

t ~ 0.8
FWHM = 80 km/s

NH = 1 x 1024 cm-2

for Tspin = 8000 K

M ~ 2 x 107 Msun
for r=50 pc
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Planetary Nebulae - NGC 7027

Hjellming
 et al.
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Star forming regions - Orion nebula (M42)

Yusef-Zadeh
 et al.
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The Microwave Background
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The Microwave Background
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Sunyaev-Zeldovich effect

• The Sunyaev-Zeldovich effect
– Photons of the CMB are scattered to higher 

frequencies by hot electrons in galaxy 
clusters, causing a negative brightness 
decrement.

– Decrement is proportional to integral of 
electron pressure through the cluster, or 
electron density if cluster is isothermal.

– Electron density and temperature can be 
estimated from X-ray observations, so the 
linear scale of the cluster is determined.

– This can be used to measure the cluster 
distance and combined with z to get H0.
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Sunyaev-Zeldovich effect
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SZ images

Reese et al. astro-ph/0205350
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Thermal SZ effect
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SZ profiles



16

G. Taylor, Astr 423 at UNM

SZ Results
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Kinetic SZ Results

Tanimura
et al. 2021
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Kinetic SZ Results

Tanimura
et al. 2021
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HI image from the VLA
HST/NICMOS image

Arp 220 - A starburst Galaxy
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Sirius at 43 GHz with the VLA
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Saturn



23

G. Taylor, Astr 423 at UNM

Solar activity in the radio
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Thermal Sources

• The Cosmic Microwave Background
• Dust
• Planets, comets, asteroids
• Emission lines (HI, CO, other atomic and molecular)
• Stellar winds and outflows 
• Sun (Quiet Sun) and other stars
• Supernovae
• HII regions 
• Starburst galaxies (thermal component from HII regions)
• Clusters of galaxies (free-free)
• Clusters of galaxies - Sunyaev-Zeldovich effect 
• Accretion disks
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Further Reading

http://www.nrao.edu/whatisra/mechanisms.shtml
http://www.nrao.edu/whatisra/
www.nrao.edu

Synthesis Imaging in Radio Astronomy 
ASP Vol 180, eds Taylor, Carilli & Perley

This lecture is on the course web page:

http://www.phys.unm.edu/~gbtaylor/astr423

http://www.nrao.edu/whatisra/mechanisms.shtml
http://www.nrao.edu/whatisra/
http://www.nrao.edu


Review for Midterm #2

• Everything since midterm #1
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Exam 2 Equations



28Practical Spectral Line Correlators

• The FX architecture
– F : Fourier transform
– X : Use a complex-correlator for each frequency channel
– Then integrate

• The XF architecture
– X : Measure correlation function at many lags
– Integrate
– F : Fourier transform

• Other architectures possible



29XF Spectral Response (2)

22% sidelobes!



30FX Spectral Response (2)

5% sidelobes



31A Data Editing Example



32Editing

•Typical calibrator 
visibility function after a 
priori calibration 

– Calibrator is 
resolved

– Will need to image
– One antenna low
– Use calibrator to fix

•Shows why flux scale 
(gain normalization) 
should only be set by a 
subset of antennas

Poorly 
calibrated 
antenna



33Calibration Summary
• Determining calibration is as important as determining source 

structure—can’t have one without the other
• Calibration dominated by antenna-based effects, permits separation of 

calibration from astronomical information
• Calibration formalism algebra-rich, but can be described piecemeal in 

comprehendible segments, according to well-defined effects
• Calibration determination is a single standard fitting problem
• Calibration an iterative process, improving various components in turn
• Point sources are the best calibrators
• Observe calibrators according requirements of components
• Data examination and editing an important part of calibration



34What is Polarized Light?
• Light is oscillating electric and magnetic fields

• Polarization is labeled by the shape of the trace of the tip of the E vector
• Each polarization has an orthogonal state

• Incoherent light can contain many polarization states

Stokes Parameters describe partially polarized light

Alternate representation:

• pol. angle (EVPA) f = 0.5 atan (U/Q)
• polarized intensity p = sqrt(Q2 + U2)

• fractional linear m = p / I
• fractional circular v = |V | / I

I = RR + LL
Q = RL + LR

U = i(LR – RL)
V = LL - RR

For circular feeds
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The Dirty Image

                                               FT

 The PSF          çè       u,v-coverage

    *

                                                    The

                            à  Dirty Image 



...Weighting

• Robust/Briggs weighting:
           Wk  =  1/[S.r(uk ,vk) + sk

2]
• Parameterized filter – allows continuous variation 

between optimal resolution (uniform weighting) and 
optimal noise (natural weighting).



The missing information

● As seen earlier, not all parts of the uv-plane are 
sampled – the 'invisible distribution'

1. “Central hole” below umin and vmin:
     - Image plane effect: Total integrated power 
          is not measured.
      - Upper limit on the largest scale in the image plane. 
2. No measurements beyond umax and vmax:
     - Size of the main lobe of the PSF is finite 
        (finite resolution).
3. Holes in the uv-plane:
      - Contribute to the side lobes of the PSF.





40Why does self-calibration work?

• self-calibration preserves the Closure Phase which is 
a good observable even in the presence of antenna-
based phase errors

Φijk = θij +θ jk +θki

= θij
true + φi −φ j( ) +θ jk

true + φ j −φk( ) +θkitrue + φk −φi( )
= θij

true +θ jk
true +θki

true



41Advantages and disadvantages of self-calibration

• Advantages
– Gains are derived for correct time, not by interpolation
– Gains are derived for correct direction on celestial sphere
– Solution is fairly robust if there are many baselines

• Disadvantages
– Requires a sufficiently bright source
– Introduces more degrees of freedom into the imaging so the 

results might not be robust and stable
– Position information may be lost



42Model fitting
• Imaging as an Inverse Problem

• In synthesis imaging, we can solve the forward problem: given a sky 
brightness distribution, and knowing the characteristics of the instrument, 
we can predict the measurements (visibilities), within the limitations 
imposed by the noise.

• The inverse problem is much harder, given limited data and noise: the 
solution is rarely unique.

• A general approach to inverse problems is model fitting. See, e.g., Press 
et al., Numerical Recipes.
1. Design a model defined by a number of adjustable parameters.
2. Solve the forward problem to predict the measurements.
3. Choose a figure-of-merit function, e.g., rms deviation between model 

predictions and measurements.
4. Adjust the parameters to minimize the merit function.

• Goals:
1. Best-fit values for the parameters.
2. A measure of the goodness-of-fit of the optimized model.
3. Estimates of the uncertainty of the best-fit parameters.



43Inspecting Visibility Data
• Fourier imaging

• Problems with direct inversion
– Sampling

• Poor (u,v) coverage
– Missing data

• e.g., no phases (speckle imaging)
– Calibration

• Closure quantities are independent of calibration
– Non-Fourier imaging

• e.g., wide-field imaging; time-variable sources (SS433)
– Noise

• Noise is uncorrelated in the (u,v) plane but correlated in the image
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Non-Thermal Sources
• Man-made signals (RFI)
• Cosmic ray air showers
• Solar Flares (Active Sun), also flare stars and brown dwarfs
• Planetary magnetospheres
• Lightning (from storms on planets and locally as RFI)
• Planetary Radar/Spacecraft telemetry 
• Supernova Remnants
• Gamma-ray Bursts and their afterglows
• Pulsars
• Magnetar flares
• Masers
• X-ray binaries/microquasars
• Normal galaxies (cosmic ray population)
• Active Galaxies (including Quasars, Blazars, etc.)
• Intracluster medium (halos and relics)
• Dark-matter decay
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Synchrotron Emission
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Thermal Sources

• The Cosmic Microwave Background
• Dust
• Planets, comets, asteroids
• Emission lines (HI, CO, other atomic and molecular)
• Stellar winds and outflows
• Sun (Quiet Sun) and other stars
• Supernovae
• HII regions 
• Starburst galaxies (thermal component from HII regions)
• Clusters of galaxies - free-free emission
• Clusters of galaxies - Sunyaev-Zeldovich effect 
• Accretion disks?
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Free-Free Emission


