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Announcements

VLA/LWA tour on Wednesday, March 26 departing 7am!
We will meet in PAIS back lot at 6:45am

Drivers (5): Greg, Ella, Mark, Brett, Charlie

Bring:

— Sturdy shoes, pants, $$% for gift shop

— Water, snack, sunscreen, sunglasses, camera
- HWG6

For credit. If you can’t go provide a 4 page paper about
a radio telescope.

HW/7 is due Wednesday April 2nd




Outline

Why self-calibrate?

How to self-calibrate

What to watch out for

Limitations of self-calibration

Practical examples of self-calibration in action
Demo of self-calibration in AIPS for HW7

This lecture is complementary to Chapter 10 of ASP 180
and is based on a lecture by Tim Cornwell

@' G. Taylor, Astr 423 at UNM




Self-calibration of a VLA snapshot

Initial image * Final image
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Calibration equation

e Fundamental calibration equation

V(1) = g (t)g, (V™ (1) + €,(1)

V.(1) Visibility measured between antennas i and j
g.(1) Complex gain of antenna i

V™) True visibility

g (1) Additive noise
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Calibration using a point source

e (Calibration equation becomes

V(1) = g,(1)g,;(1)S + £,:(1)

\) Strength of point source

e Solve for antenna gains via least squares algorithm

o Works well - lots of redundancy

- N-1 baselines contribute to gain estimate for any given
antenna
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Why is a priori calibration insufficient?

e The complex gains usually have been derived by means of
observation of a calibration source before/after the target source

e Initial gain calibration is insufficient

- Gains were derived at a different time
e Troposphere and ionosphere are variable
e Electronics may be variable

- Gains were derived for a different direction
e Troposphere and ionosphere are not uniform

G. Taylor, Astr 423 at UNM




What is the Troposphere doing?

e Neutral
atmosphere
contains water

vapor

Index of refraction
differs from “dry”
air

Variety of moving
spatial structures

baseline

G. Taylor, Astr 423 at UNM
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Calibration using a model of a complex source

e Don’ t need point source - can use model

u model
Vij(t)=gi(t)gj(t)‘/ij +8,‘j(t)

ymode Model visibility

Yy

e Redundancy means that errors in the model average
down

e Can smooth or interpolate gains if desired
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Relationship to point source calibration

e Made a fake point source by dividing by model
visibilities

Xij(t) = gi(t)g;(t) + g'ij(t)

Modified noise term

G. Taylor, Astr 423 at UNM




Why does self-calibration work?

o self-calibration preserves the Closure Phase which is
a good observable even in the presence of antenna-
based phase errors

o, =0,+60,+0,
=07+ (6, -9, )+ 0 + (9, - 0 ) + 05 + (0.~ 4))

true true true
= HU. + ij + 0,
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SMA closure phase measurements at 682GHz

Beacon Closure Phase at 682 CHz on Sep. 20, 2002

Baseline 4-5 phase
Baseline 4-6 phase
Baseline 5-6 phase

Closure phase

74 76
Universal Time (hours)
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Advantages and disadvantages of self-calibration

e Advantages
- Gains are derived for correct time, not by interpolation
- (Gains are derived for correct direction on celestial sphere
- Solution is fairly robust if there are many baselines

e Disadvantages
- Requires a sufficiently bright source

- Introduces more degrees of freedom into the imaging so the
results might not be robust and stable

- Position information may be lost
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When to and when not to self-calibrate

Calibration errors may be present if one or both of the following are true:
- The background noise is considerably higher than expected
- There are convolutional artifacts around objects, especially point sources

Don’ t bother self-calibrating if these signatures are not present

Don’ t confuse calibration errors with effects of poor Fourier plane
sampling such as:

- Low spatial frequency errors due to lack of short spacings
- Deconvolution errors around moderately resolved sources

G. Taylor, Astr 423 at UNM l
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How to self-calibrate

Create an initial source model, typically from an initial
image (or else a point source)

- Use full resolution information from the clean components or
MEM image NOT the restored image

Use Stokes ‘I’ (not enough SNR in Q, U or V)

Find antenna gains

- Using least squares fit to visibility data
Apply gains to correct the observed data

Create a new model from the corrected data
- Using for example Clean or Maximum Entropy

Go to (2), unless current model is satisfactory
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Choices in self-calibration

e [nitial model?
- Point source often works well

- Clean components from initial image
e Don’t go too deep!
- Simple model-fitting in (u,v) plane

o Self-calibrate phases or amplitudes?
- Phases first

e Phase errors cause anti-symmetric structures in images

- For VLA and VLBA, amplitude errors tend to be relatively
unimportant at dynamic ranges < 1000 or so

G. Taylor, Astr 423 at UNM




More choices....

e \Which baselines?

- For a simple source, all baselines can be used

- For a complex source, with structure on various scales, start
with a model that includes the most compact components,
and use only the longer baselines

e \What solution interval should be used?

- Generally speaking, use the shortest solution interval that
gives “sufficient” signal/noise ratio (SNR)

- If solution interval is too long, data will lose coherence
e Solutions will not track the atmosphere optimally

G. Taylor, Astr 423 at UNM




Sensitivity limit

e (Can self-calibrate if SNR on most baselines is greater
than one

e For a point source, the error in the gain solution is

| o

o = 4
¢ JN-=-2 S

| o

Phase only

Amplitude and phase o

_ 4
¢ JN-=-3 S

o, Noise per visibility sample

N Number of antennas

e If error in gain is much less than 1, then the noise in
the final image will be close to theoretical
- Actually a bit lower than theoretical

G. Taylor, Astr 423 at UNM




You can self-calibrate on weak sources!

e Forthe VLA at 8 GHz, the noise in 10 seconds for a
single 1024 MHz IF is about 4.5 mJy on a baseline

- Average 4 IFs (2 RR and 2 LL) for 60 seconds to decrease
this by (4 * 60/10)"2 to 1 mJy

- If you have a source of flux density about 1.5 mJy, you can

get a very good self-cal solution if you set the SNR threshold
to 1.5.
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Hard example: VLA Snapshot, 8 GHz, B Array

UV plot for NGC 5322, B array snapshot, 8.4 GHz

LINER galaxy RN
NGC 5322 ’:“ "-‘-‘ ~~ \k\\\\\\::\\\\ \\ \
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Data taken in AU
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Can self-cal _ :
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NGC 5322 8.4 GHz Original Callbration

Initial NGC 5322 Imaging

Noise is 150 microJy/beam
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First pass

Used 4 (merged) clean components in model

10-sec solutions, no averaging, SNR > 5

- CALIB1: Found 3238 good solutions

- CALIB1: Failed on 2437 solutions

- CALIB1: 2473 solutions had insufficient data
30-sec solutions, no averaging, SNR > 5

- CALIB1: Found 2554 good solutions

- CALIB1: Failed on 109 solutions

- CALIB1: 125 solutions had insufficient data
30-sec solutions, average all IFs, SNR > 2
- CALIB1: Found 2788 good solutions

G. Taylor, Astr 423 at UNM



Phase Solutions from 1st Self-Cal

Galn phase vs IAT time for NGC 5322
SN2 Rpol IF1

50 1RVLAIN3G, + + + * +

+

Reference antenna has
zero phase correction

- No absolute position
info.

+ F + + + 4+ + + + F

Corrections up to 150°
in 14 minutes

Typical coherence time
is a few minutes

22
TIME (HOURS)
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Image after first pass

NGC 5322 8.4 GHz Original Callbration NGC 5322 8.4 GHz, one phase self-cal
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Phase Solutions from 29 Self-Cal

Used 3 components

Corrections are

reduced to 40° in 14
minutes

Observation now quasi-
coherent

Next: shorten solution
interval to follow
troposphere even
better

Galn phase vs IAT time for NGC 5322

SN 1 Rpol IF 1, Second Self-Cal

G. Taylor, Astr 423 at UNM
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Image after 2" Self-Calibration

NGC 5322 8.4 GHz, second phase self-cal
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Result after second self-calibration

e Image noise is now 47 microJy/beam

- Theoretical noise in 10 minutes is 45 microJy/beam for
natural weighting

- For 14 minutes, reduce by (1.4)"2to 38 microJy/beam
- For robust=0, increase by 1.19, back to 45 microJy/beam

e Image residuals look “noise-like”

- Expect little improvement from further self-calibration

- Dynamic range is 14.1/0.047 = 300
e Amplitude errors typically come in at dynamic range ~ 1000

e Concern: Source “jet” is in direction of sidelobes

G. Taylor, Astr 423 at UNM




Phase Solutions from 3 Self-Cal

Galn phase vs IAT time for NGC 5322, 3rd self-cal
SN1 Rpol IF 1

11-component
model used

10-second
solution intervals

Corrections look
noise-dominated

Expect little
Improvement in
resulting image

Degrees
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NGC 5322 8.4 GHz, second phase self-cal
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Easy example

8.4GHz
observations of
Cygnus A

VLA C
configuration

Deconvolved
using CASA
multi-scale clean

Calibration using
CASA calibrater
tool

@' G. Taylor, Astr 423 at UNM
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Image without self-calibration

Phase
calibration
using nearby
source
observed
every 20
minutes

Peak ~ 22Jy

Display
shows -
0.05Jy to
0.5Jy

G. Taylor, Astr 423 at UNM
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After 1 phase-only self-calibration

e Phase
solution
every 10s
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After 1 amplitude and phase calibrations
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After 2 amplitude and phase calibrations
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After 3 amplitude and phase calibrations
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After 4 amplitude and phase calibrations
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Summary of Cygnus A example

Entire image Off source

Minimum Minimum
No selfcalibration -0.179 -0.116
Phase only -0.133 -0.035
1 Amp, Phase -0.073 -0.033
2 Amp, Phase -0.064 -0.033
3 Amp, Phase -0.059 -0.033
4 Amp, Phase -0.058 -0.032

e ~ Factor of three reduction in off source error levels
e Peak increases slightly as array phases up

e Off source noise is less structured

e Still not noise limited

G. Taylor, Astr 423 at UNM




Final image showing all emission > 3 sigma
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How well it works

Can be unstable for complex sources and poor
Fourier plane coverage
- VLA snapshots and VLBA observations

Quite stable for well sampled VLA observations and
appropriately complex sources

Standard step in most experiments (except detection)

Bad idea for detection experiments
- Will manufacture source from noise

- Use in-beam calibration for detection experiments

G. Taylor, Astr 423 at UNM




Recommendations

Flag your data carefully before self-cal

Expect to self-calibrate most non-detection experiments

For VLA observations, expect to see convergence in 3 - 5 iterations
Monitor off source noise, peak brightness to determine convergence

Few antennas (VLBI) or poor (u,v) coverage can require many more
iterations of self-cal

- Be careful with the initial model
e Don’t go too deep into your clean components!
o |f desperate, try a model from a different configuration or a different band

Experiment with tradeoffs on solution interval
- Shorter intervals follow the atmosphere better
- Don’t be too afraid to accept low SNRs

G. Taylor, Astr 423 at UNM l
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Demo

e Switch to AIPS and demo self-calibration on VLA data
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o ntto://lwww.nrao.edu/whatisra/mechanisms.sniml
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