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2Interferometry Basics

http://spiff.rit.edu/classes/ast613/lectures/radio_iii/radio_iii.html

Point source
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3Fourier Transform Pairs

Name 3
FT relations:
1)AntennaAperture
2) 
3)  

Name 3
FT relations:
1) Power pattern
2)
3)
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4Fourier Transform Pairs

Name 3
FT relations:
1)AntennaAperture
2) Time series
3) Sky brightness

Name 3
FT relations:
1) Power pattern
2) Power spectrum
3) Visibility
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5The Correlation Function
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6The Correlation Function
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7Auto-Correlation and Convolution Functions
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8Auto-Correlation and Convolution Functions



G. Taylor, Astr 423 at UNM

9
Fringe Fitting

2015
ASTR423
VLBA
obs
3C279



G. Taylor, Astr 423 at UNM

10

G. Taylor, Astr 423 at UNM

Announcements

• HW4 – 12 received, 1 MIA
• VLA observing done!
• LWA observing ?
• Exam 1 on Wednesday, March 3
• Constants posted
• Review problem 3-1
• Send me your choices
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Outline

• Why calibrate and edit?
• How to calibrate
• What to Edit
• Practical Calibration Planning
• Calibration Evaluation
• A Dictionary of Calibration Components
• More on editing and RFI
• Summary

This lecture is complementary to Chapter 5 of ASP 180 
and is based on a lecture by George Moellenbrock
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Why Calibration and Editing?

• Synthesis radio telescopes, though well-designed, are not perfect 
(e.g., surface accuracy, receiver noise, polarization purity, 
stability, etc.)

• Need to accommodate engineering (e.g., frequency conversion, 
digital electronics, etc.)

• Hardware or control software occasionally fails or behaves 
unpredictably

• Scheduling/observation errors sometimes occur (e.g., wrong 
source positions)

• Atmospheric conditions not ideal (not limited to “bad” weather)
• Radio Frequency Interference (RFI)

Determining instrumental properties (calibration)
is as important as 

determining radio source properties
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From Idealistic to Realistic

• Formally, we wish to obtain the visibility function, which we 
intend to invert to obtain an image of the sky:

• In practice, we correlate (multiply & average) the electric field 
(voltage) samples, xi & xj, received at pairs of telescopes (i,j)
– Averaging duration is set by the expected timescales for variation of 

the correlation result (typically 10s or less for the VLA)
• Single radio telescopes are devices for collecting the signal xi(t) 

and providing it to the correlator.

V u,v( ) = I l,m( )e− i2π ul+vm( )dl  dm
sky
∫   
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What signal is really collected?

• The net signal delivered by antenna i, xi(t), is a combination of 
the desired signal, si(t,l,m), corrupted by a factor Ji(t,l,m) and 
integrated over the sky, and noise, ni(t):

• Ji(t,l,m) is the product of a host of effects which we must calibrate
• In some cases, effects implicit in the Ji(t,l,m) term corrupt the 

signal irreversibly and the resulting data must be edited
• Ji(t,l,m) is a complex number 
• Ji(t,l,m) is antenna-based
• Usually, |ni |>> |si|

xi (t) = Ji (t,l,m)si (t,l,m) dldm
sky
∫ + ni (t)

= "si (t) + ni (t)
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The Measurement Equation

• We can now write down the calibration situation in a 
general way - the Measurement Equation:

• …and consider how to solve it!

 

r
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Ji ⊗
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J j
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∫ e− i2π uij l+vij m( )dldm
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The Measurement Equation - Simplified

• First, isolate non-direction-dependent effects, and factor them 
from the integral:

• Next, we recognize that it is often possible to assume Jsky=1, 
and we have a relationship between ideal and observed 
Visibilities:
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Solving the Measurement Equation
• The J terms can be factored into a series of components representing 

physical elements along the signal path:

• Depending upon availability of estimates for various J terms, we can 
re-arrange the equation and solve for any single term, if we know 
Videal:

• After obtaining estimates for all relevant J, data can be corrected:



G. Taylor, Astr 423 at UNM

18
Solving the Measurement Equation

• Formally, solving for any calibration component is 
always the same non-linear fitting problem:

• Algebraic particulars are stored safely and conveniently 
inside the matrix formalism (out of sight, out of mind!)

• Viability of the solution depends on the underlying algebra 
(hardwired in calibration applications) and relies on proper 
calibration observations

 

r
Vij

corrected ⋅obs =
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Ji
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Antenna-based Calibration

• Success of synthesis telescopes relies on antenna-based calibration 
• N antenna-based factors, N(N-1) visibility measurements
• Fundamentally, only information that cannot be factored into antenna-

based terms is believable as being of astronomical origin
• Closure: calibration-independent observables:

• Closure phase (3 baselines):

• Closure amplitude (4 baselines):

φij
obs + φ jk

obs + φki
obs = φij

real + θi −θ j( ) + φ jk
real + θ j −θk( ) + φkireal + θk −θi( )

= φij
real + φ jk

real + φki
real

Vij
obsVkl

obs

Vik
obsVjl

obs =
JiJ jVij

real Jk JlVkl
real

JiJkVik
real J j JlVjl

real

=
Vij

realVkl
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Vik
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Antenna-based Calibration
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Planning for Good Calibration

• A priori calibrations (provided by the observatory)
• Antenna positions, earth orientation and rate
• Clocks
• Antenna pointing, gain, voltage pattern
• Calibrator coordinates, flux densities, polarization properties

• Absolute flux calibration
• True calibration very difficult, requires great effort
• Substitute is to reference to a source of known flux (e.g., 3C286)

• Cross-calibration
• Observe nearby point sources against which calibration components 

can be solved, and transfer solutions to target observations
• Choose appropriate calibrators for different components; usually 

strong point sources because we can predict their visibilities
• Choose appropriate timescales for each component

• Simple (common) example, Gain and Bandpass:
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“Electronic” Gain, G

• Catch-all for most amplitude and phase effects introduced by 
antenna electronics (amplifiers, mixers, quantizers, digitizers)

• Most commonly treated calibration component
• Dominates other effects for standard VLA observations
• Includes scaling from engineering (correlation coefficient) to 

radio astronomy units (Jy), by scaling solution amplitudes 
according to observations of a flux density calibrator

• Often also includes ionospheric and tropospheric effects which 
are typically difficult to separate unto themselves
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Bandpass Response, B

• G-like component describing frequency-dependence of antenna 
electronics, etc.

• Filters used to select frequency passband not square
• Optical and electronic reflections introduce ripples across band
• Often assumed time-independent, but not necessarily so
• Typically (but not necessarily) normalized
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24Typical VLA observation 
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25Uncalibrated spectra on 3C286
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26Bandpass solutions
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27Spectra after Fringe-fit and bandpass calibration
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Observed Data vs. UV dist
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Observed Data – Phase vs. Time
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Observed Data – Amplitude Spectrum 
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Gain Amp/Phase Solutions (B calibrator)
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Bandpass Solutions



G. Taylor, Astr 423 at UNM

33
Bandpass-Calibrated Data (Amplitude)
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Gain Amp/Phase Solutions
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Corrected Data vs. UV dist
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Effect of Calibration in the Image Plane
Uncalibrated                       Calibrated                                                

Calibrated
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A Dictionary of Calibration Components

• Ji contains many components:
• F = ionospheric Faraday rotation
• T = tropospheric effects
• P = parallactic angle
• E = antenna voltage pattern
• D = polarization leakage
• G = electronic gain
• B = bandpass response
• K = geometric compensation

• Order of terms follows signal path (right to left)
• Direction-dependent terms involve FT in solution

 

t
Ji =

t
Ki

t
Bi

t
Gi

t
Di

t
Ei

t
Pi

t
Ti

t
Fi



G. Taylor, Astr 423 at UNM

38
Tropospheric Effects, T

• The troposphere causes polarization-independent 
amplitude and phase effects due to emission/opacity 
and refraction, respectively

• Typically 2-3m excess path length at zenith compared to vacuum
• Higher noise contribution, less signal transmission:  Lower SNR
• Most important at n > 15 GHz where water vapor absorbs/emits
• More important nearer horizon where tropospheric path length 

greater
• Clouds, weather = variability in phase and opacity; may vary 

across array
• Water vapor radiometry?  Phase transfer from low to high 

frequencies?
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Parallactic Angle, P

• Orientation of sky in telescope’s field of view
• Constant for equatorial telescopes
• Varies for alt-az-mounted telescopes:

• Rotates the position angle of linearly polarized radiation
• Analytically known, and its variation provides leverage for 

determining polarization-dependent effects

χ(t) = arctan
cos l( )sin h(t)( )

sin l( )cos δ( ) − cos l( )sin δ( )cos h(t)( )
$

%&
'

()

l = latitude,  h(t) = hour angle,  δ =  declination 



G. Taylor, Astr 423 at UNM

40
Antenna Voltage Pattern, E

• Antennas of all designs have direction-dependent gain
• Important when region of interest on sky comparable to or larger 

than l/D
• Important at lower frequencies where radio source surface density is 

greater and wide-field imaging techniques required
• Beam squint:  Ep and Eq not parallel, yielding spurious polarization 
• For convenience, direction dependence of polarization leakage (D) 

may be included in E (off-diagonal terms then non-zero)
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Polarization Leakage, D

• Polarizer is not ideal, so orthogonal polarizations not perfectly 
isolated

• Well-designed feeds have D ~ a few percent or less
• A geometric property of the feed design, so frequency 

dependent
• For R,L systems, total-intensity imaging affected as ~DQ, DU, 

so only important at high dynamic range (Q,U~D~few %, 
typically)

• For R,L systems, linear polarization imaging affected as ~DI, so 
almost always important
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“Electronic” Gain, G

• Catch-all for most amplitude and phase effects introduced by 
antenna electronics (amplifiers, mixers, quantizers, digitizers)

• Most commonly treated calibration component
• Dominates other effects for standard VLA observations
• Includes scaling from engineering (correlation coefficient) to 

radio astronomy units (Jy), by scaling solution amplitudes 
according to observations of a flux density calibrator

• Often also includes ionospheric and tropospheric effects which 
are typically difficult to separate unto themselves

• Excludes frequency dependent effects



G. Taylor, Astr 423 at UNM

43
Bandpass Response, B

• G-like component describing frequency-dependence of antenna 
electronics, etc.

• Filters used to select frequency passband not square
• Optical and electronic reflections introduce ripples across band
• Often assumed time-independent, but not necessarily so
• Typically (but not necessarily) normalized
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Geometric Compensation, K

• Must get geometry right for Synthesis Fourier Transform relation 
to work in real time; residual errors here require “Fringe-fitting”

• Antenna positions (geodesy)
• Source directions (time-dependent in topocenter!) (astrometry)
• Clocks
• Electronic pathlengths
• Importance scales with frequency and baseline length
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Non-closing Effects: 

• Correlator-based errors which do not 
decompose into antenna-based components

• Most digital correlators designed to limit such effects to 
well-understood and uniform scaling laws (absorbed in G)

• Additional errors can result from averaging in time and 
frequency over variation in antenna-based effects and 
visibilities (practical instruments are finite!)

• RFI
• Virtually indistinguishable from source structure effects
• Geodetic observers consider determination of radio 

source structure—a baseline-based effect—as a required 
calibration if antenna positions are to be determined 
accurately
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Calibrator Rules of Thumb

• T, G, K:
• Strong and point-like sources, as near to target source as possible
• Observe often enough to track phase and amplitude variations: calibration intervals 

of up to 10s of minutes at low frequencies (beware of ionosphere!), as short as 1 
minute or less at high frequencies

• Observe at least one calibrator of known flux density at least once

• B:
• Strong enough for good sensitivity in each channel (often, T, G calibrator is ok), 

point-like if visibility might change across band
• Observe often enough to track variations (e.g., waveguide reflections change with 

temperature and are thus a function of time-of-day)

• D:
• Best calibrator for full calibration  is strong and pointlike
• If polarized, observe over a broad range of parallactic angle to disentangle Ds and 

source polarization (often, T, G calibrator is ok)

• F:
• Choose strongly polarized source and observe often enough to track variation
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Data Examination and Editing

• After observation, initial data examination and editing very 
important

• Will observations meet goals for calibration and science requirements?
• Some real-time flagging occurred during observation (antennas off-

source, LO out-of-lock, etc.).  Any such bad data left over?  (check 
operator’s logs)

• Any persistently ‘dead’ antennas (Ji=0 during otherwise normal 
observing)?  (look at data on strong calibrators)

• Amplitude and phase should be continuously varying—edit outliers
• Any antennas shadowing others?  Edit such data.
• Be conservative: those antennas/timeranges which are bad on calibrators 

are probably bad on weak target sources—edit them
• Periods of poor weather?  (check operator’s log)
• Distinguish between bad (hopeless) data and poorly-calibrated data.  

E.g., some antennas may have significantly different amplitude response 
which may not be fatal—it may only need to be calibrated

• Radio Frequency Interference (RFI)?
• Choose reference antenna wisely (ever-present, stable response)
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A Data Editing Example
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Radio Frequency Interference

• RFI originates from man-made signals generated in the antenna 
electronics or by external sources (e.g., satellites, cell-phones, 
radio and TV stations, automobile ignitions, microwave ovens, 
etc.)

• Adds to total noise power in all observations, thus decreasing 
sensitivity to desired natural signal, possibly pushing electronics into 
non-linear regimes

• As a contribution to the ni term, can correlate between antennas if of 
common origin and baseline short enough (insufficient decorrelation via 
geometric delay)

• When RFI is correlated, it obscures natural emission in spectral line 
observations
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Radio Frequency Interference

• Has always been a problem (Reber, 1944, in total 
power)!
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Radio Frequency Interference (cont)

• Growth of telecom industry threatening radioastronomy!
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Radio Frequency Interference (cont)

• RFI Mitigation
• Careful electronics design in antennas, including notch filters
• High-dynamic range digital sampling
• Observatories world-wide lobbying for spectrum management
• Choose interference-free frequencies (or at least be prepared to throw 

away lots of bandwidth – VLA 1-2 GHz only ~500 MHz useful)
• Observe continuum experiments in spectral-line modes so affected 

channels can be edited
• Various off-line mitigation techniques under study
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Summary

• Determining calibration is as important as determining source 
structure—can’t have one without the other

• Calibration dominated by antenna-based effects, permits separation of 
calibration from astronomical information

• Calibration determination is a single standard fitting problem
• Calibration an iterative process, improving various components in turn
• Strong point sources are the best calibrators
• Observe calibrators according requirements of components
• Data examination and editing an important part of calibration
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Further Reading

• http://www.nrao.edu/whatisra/mechanisms.shtml
• http://www.nrao.edu/whatisra/
• www.nrao.edu

• Synthesis Imaging in Radio Astronomy 
• ASP Vol 180, eds Taylor, Carilli & Perley

http://www.nrao.edu/whatisra/mechanisms.shtml
http://www.nrao.edu/whatisra/
http://www.nrao.edu

