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Announcements

VLA observing tonight or tomorrow?
LWA observing ?
Interferometry by Thompson, Moran & Swenson:

Exam 1 on Wednesday, March 3
ALMA interferometry school Mar 15-26

G. Taylor, Astr 423 at UNM



https://www.dropbox.com/s/tpt4l6tlner32zb/2017_book_interferometryandsynthesisinra.pdf?dl=0

Announcements

 ALMA interferometry school Mar 15-26

1) ALMA Basics, Cycle 8 Capabilities
2) Interferometry Basics

3) New Proposal Review

4) The OT

5) ALMA Data Products

CASA Simulations
What's new in CASA

6)
7)
8) Science-ready Data Products
9) Imaging with CASA

G. Taylor, Astr 423 at UNM




Outline

Re-cap of interferometry
- What is a correlator?

The correlation function
Simple correlators
Spectral line correlators
Details

- Sampling and quantization
- Delay model

The VLA and LWA correlators

This lecture is complementary to Chapter 4 of ASP 180
and is based on a lecture by Walter Brisken

G. Taylor, Astr 423 at UNM




Re-cap of Interferometry

What are we fundamentally trying to measure?

How do we accomplish this in a traditional telescope?
- Optical or radio

What changes when we go to a interferometer?
- A “sparse” telescope

What do visibilities tell us about the sky?

G. Taylor, Astr 423 at UNM




What is a Correlator?

A correlator is a hardware or software device that
combines sampled voltage time series from one or more
antennas to produce sets of complex visibilities, Vij :

o Visibilities are in general a function of
- Frequency
- Antenna pair
- Time
e They are used for
- Imaging
- Spectroscopy / polarimetry
- Astrometry
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The Correlation Function

For continuous functions, fand g, the cross-correlation is defined as:

(f % g)(t) % / fr(7) g(t +7)dr,

where f* denotes the complex conjugate of f.

Kelative amplilnde
Relative amplitude
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Auto-Correlation and Convolution Functions
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Auto-Correlation and Convolution Functions

[
Convolution Cross-correlation  Autocorrelation
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The Correlation Function

Ci; (1) = (vi(t)v; (T + 7)) 1

e If © = J itis an auto-correlation (AC). Otherwise itis a
cross-correlation (CC).

o Useful for
- Determining timescales (CC and AC)
Motion detection (2-D CC)
Optical character recognition (2-D CC)
Pulsar timing

Template matching (CC)
e Also called "matched filtering”
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A Real (valued) Cross Correlator

Ciji (1) = (v (t)vi(t + 7))

-
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Visibilities

What astronomers really want is the complex visibility
Vis = (E;(O)E;(t+ 7))

where the real part of F/,(¢) is the voltage measured
by antenna ;.

So what is the imaginary part of F;(t) ?

It is the same as the real part but with each
frequency component phase lagged by 90 degrees.

Ei(t) = vi(t) + £ [ 2l gy

t—t’
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The Complex Correlator

Vij = (i(t)vj(t + 7)) i (H [vi(t)] v;(t + 7))

A
L
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Spectral Line Correlators

e Chop up bandwidth for
- Calibration
e Bandpass calibration
e Fringe fitting
- Spectroscopy
- Wide-field imaging
- (Its all Spectral Line these days)
e Conceptual version
- Build analog filter bank
- Attach a complex correlator to each filter
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Practical Spectral Line Correlators

Use a single filter / sampler
- Easier to calibrate
- Practical, up to a point
The FX architecture
- F : Replace filterbank with digital Fourier transform
- X : Use a complex-correlator for each frequency channel
- Then integrate

The XF architecture
- X : Measure correlation function at many lags

- Integrate
- F : Fourier transform

Other architectures possible

G. Taylor, Astr 423 at UNM




The XF Correlator
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XF Spectral Response

e XF correlators measure lags over a finite delay range

Vi) = (it + )0 ()

e Results in convolved visibility spectrum

7wt + )0 (55|
F [(vi(t)v;(t + 7))] *x sinc (NAtv)
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XF Spectral Response (2)
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Hanning Smoothing

o Multiply lag spectrum by Hanning taper function

H(t) = (1+cos NAt)

e This is equivalent to convolution of the spectrum by

H(V):5(V)_%5(V 2N1At) %5@’ 2NlAt)

Note that sensitivity and spectral resolution are reduced.
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Hanning Smoothing (2)
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FX Correlators

e Spectrum is available before integration
- Can apply fractional sample delay per channel
- Can apply pulsar gate per channel

e Most of the digital parts run N times slower than the
sample rate

e Fewer computations (compared to XF)
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The FX correlator
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FX Spectral Response

e FX Correlators derive spectra from truncated time series
t
— BN ——
o) = F [v< ) (Nm)]

F| ;*f[n (NLN)]

x F[v(t)] xsinc (NAtv)

. Results in convolved visibility spectrum
Vii(v) = <(f [0;(t)] % sinc (N Atv)) (F |vj(t)] * sinc (N At 1/))*>
= (Fvi(®)] F[v;(¥)]") *sinc* (N At v)
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FX Spectral Response (2)
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Time Series, Sampling, and Quantization

o 1vi(t)} are real-valued time series sampled at
“uniform” intervals, At.

e The sampling theorem allows this to accurately

reconstruct a bandwidth of Av = 5 .

e Sampling involves quantization of the signal

- Quantization noise
- Strong signals become non-linear
- Sampling theorem violated!

G. Taylor, Astr 423 at UNM




Quantization Noise

Quantization efficiency
A

(Y
Nlevels nq(f=1) no(f=2) “1
2 0.64 0.74

3 0.81 0.89
4 0.88 0.94
00 1.00 1.00

(For normal-distributed v)

| |
| |

! -3 -2
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Automatic Gain Control (AGC)

e Normally prior to sampling the amplitude level of each
time series is adjusted so that quantization noise is
minimized.

e This occurs on timescales very long compared to a
sample interval.

e The magnitude of the amplitude is stored so that the
true amplitudes can be reconstructed after
correlation.

G. Taylor, Astr 423 at UNM




The Correlation Coefficient =

The correlation coefficient, #ij measures the likeness of two time series
in an amplitude independent manner:

0ii = Vi
g \/Vv:z'ij

Normally the correlation coefficient is much less than 1

Because of AGC, the correlator actually measures the correlation
coefficient. The visibility amplitude is restored by dividing by the AGC
gain.
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Van Vleck Correction

At low correlation,
guantization increases
correlation

Quantization causes
predictable non-linearity
at high correlation V;;

Correction must be

applied to the real and
iImaginary parts of P
separately | — 2 level
- Thus the visibility phase is ---- 00 level

affected as well as the R - - .
amplitude 0.75

G. Taylor, Astr 423 at UNM




The Delay Model

7 Is the difference between the geometric delays of
antenna ; and antenna ;. It can be + or -.

The delay center moves across the sky
- T is changing constantly

Fringes at the delay center are stopped.
- Long time integrations can be done
- Wide bandwidths can be used

Simple delay models incorporate:

- Antenna locations
- Source position
- Earth orientation

VLBI delay models must include much more!

G. Taylor, Astr 423 at UNM




Pulsar Gating

Pulsars emit regular pulses with small duty cycle
Period inrange 1 msto 8s; At < Ppyjsar < T
Blanking during off-pulse improves sensitivity

Propagation delay is

frequency dependent

L I I I

i

©
O

Amplitude

100 200
Pulse Phase (°)
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VLBA Multiply Accumulate (MAC) Card
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The University of New Mexico
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BEE2-based Correlator

BEE2: FPGA-based, scalable, modular,
upgradeable signal processing system
for radio astronomy developed at
Berkeley

ROACH2 boards at LWA-SV

Being used for several projects

- 300-station FX correlator for EOR
telescope (HERA)

- 288-station correlator for LWA-OVRO

Modest hardware cost ($15k/ROACH2 +
switch)

- LWA-SV uses 16 ROACH2 + 7 GPU
servers

Real effort is in the FPGA “software”

ROACH board

G. Taylor, Astr 423 at UNM
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The VLA WIDAR Correlator

XF architecture duplicated 64 times, or “FXF”
- Four 2GHz basebands per polarization (3 bit sampling)
- Digital filterbank makes 16 subbands per baseband
- 16,384 channels/baseline at full sensitivity
- 4 million channels with less bandwidth!

Initially will support 32 stations with plans for 48

2 stations at 25% bandwidth or 4 stations at 6.25%
bandwidth can replace 1 station input

Correlator efficiency is about 95%
- Compare to 81% for VLA

VLBI and LWA ready

G. Taylor, Astr 423 at UNM




Basic Correlator Stages for the LWA

. Correlate LWA1 beams with single dipoles at
LWA1 and LWA-SV (success!)

. Correlate LWA1 and LWA-SV using LSL and
supercorrelator.py

. Digitize VLA dishes and correlate with LWA1

and LWA-SV (works!) on LWAUCF with LSL
supercorrelator.py

. Correlate ~10 LWA stations (the “swarm”)
use DifX software correlator

. Correlate ~50 stations (the “hive”) go to GPU
based correlator?

G. Taylor, Astr 423 at UNM




Systom[Saus [LastUpated

D51yl Running 1 minute(s)
(A SS\VAN Running 1 minute(s)
LWA1 Running 1 minute(s)

Projoct[Observaon e [Raw s [Stas

20B-296, 38964945 2021/02/09 07:24 UTC 13.347 TB completed for 6 days, 14:39:24

completed for 6 days, 13:42:12

20B-252, 38964902 2021/02/14 19:12 UTC 4.595 TB
completed for 4 days, 13:09:36

20B-296, 39179170 2021/02/15 08:53 UTC 6.019 TB

Last retrieved 0 minutes ago

ot ours o[ isag e
/dataflocal  11% 16T
/dataflocal  21% 14T
/dataflocal  35% 12T
/home 38% 22T

Last retrieved 0 hour(s), 3 minute(s) ago.
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T
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o htto://www.nrao.edu/whatisra/mechanisms.sntm|
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