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Announcements

• VLA observing tonight or tomorrow?
• LWA observing ?
• Interferometry by Thompson, Moran & Swenson:
• https://www.dropbox.com/s/tpt4l6tlner32zb/2017_book_in

terferometryandsynthesisinra.pdf?dl=0
• Exam 1 on Wednesday, March 3
• ALMA interferometry school Mar 15-26

https://www.dropbox.com/s/tpt4l6tlner32zb/2017_book_interferometryandsynthesisinra.pdf?dl=0
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Announcements

• ALMA interferometry school Mar 15-26
1) ALMA Basics, Cycle 8 Capabilities
2) Interferometry Basics
3) New Proposal Review
4) The OT
5) ALMA Data Products

6) CASA Simulations
7) What's new in CASA
8) Science-ready Data Products
9) Imaging with CASA
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4Outline

• Re-cap of interferometry
– What is a correlator?

• The correlation function
• Simple correlators
• Spectral line correlators
• Details
– Sampling and quantization
– Delay model

• The VLA and LWA correlators

This lecture is complementary to Chapter 4 of ASP 180 
and is based on a lecture by Walter Brisken
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Re-cap of Interferometry

• What are we fundamentally trying to measure?

• How do we accomplish this in a traditional telescope?
– Optical or radio

• What changes when we go to a interferometer?
– A “sparse” telescope

• What do visibilities tell us about the sky?
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6What is a Correlator?

• Visibilities are in general a function of
– Frequency
– Antenna pair
– Time

• They are used for
– Imaging
– Spectroscopy / polarimetry
– Astrometry

A correlator is a hardware or software device that 
combines sampled voltage time series from one or more 
antennas to produce sets of complex visibilities,       .
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7The Correlation Function
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8Auto-Correlation and Convolution Functions
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9Auto-Correlation and Convolution Functions
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10The Correlation Function

• If            it is an auto-correlation (AC).  Otherwise it is a 
cross-correlation (CC).

• Useful for
– Determining timescales (CC and AC)
– Motion detection (2-D CC)
– Optical character recognition (2-D CC)
– Pulsar timing
– Template matching (CC)

• Also called “matched filtering”
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11A Real (valued) Cross Correlator
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12Visibilities

What astronomers really want is the complex visibility

where the real part of           is the voltage measured
by antenna   .

So what is the imaginary part of           ?

It is the same as the real part but with each 
frequency component phase lagged by 90 degrees.
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13The Complex Correlator



G. Taylor, Astr 423 at UNM

14Spectral Line Correlators

• Chop up bandwidth for
– Calibration

• Bandpass calibration
• Fringe fitting

– Spectroscopy
– Wide-field imaging
– (Its all Spectral Line these days) 

• Conceptual version
– Build analog filter bank
– Attach a complex correlator to each filter
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15Practical Spectral Line Correlators

• Use a single filter / sampler
– Easier to calibrate
– Practical, up to a point

• The FX architecture
– F : Replace filterbank with digital Fourier transform
– X : Use a complex-correlator for each frequency channel
– Then integrate

• The XF architecture
– X : Measure correlation function at many lags
– Integrate
– F : Fourier transform

• Other architectures possible



G. Taylor, Astr 423 at UNM

16The XF Correlator
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17XF Spectral Response

• XF correlators measure lags over a finite delay range

• Results in convolved visibility spectrum
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18XF Spectral Response (2)

22% sidelobes!
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19Hanning Smoothing

• Multiply lag spectrum by Hanning taper function

• This is equivalent to convolution of the spectrum by

●Note that sensitivity and spectral resolution are reduced.
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20Hanning Smoothing (2)

2 chans wide
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21FX Correlators

• Spectrum is available before integration
– Can apply fractional sample delay per channel
– Can apply pulsar gate per channel

• Most of the digital parts run N times slower than the 
sample rate

• Fewer computations (compared to XF)
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22The FX correlator
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23FX Spectral Response

• FX Correlators derive spectra from truncated time series

● Results in convolved visibility spectrum
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24FX Spectral Response (2)

5% sidelobes
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25Time Series, Sampling, and Quantization

• are real-valued time series sampled at 
“uniform” intervals,      .

• The sampling theorem allows this to accurately 
reconstruct a bandwidth of                  .

• Sampling involves quantization of the signal
– Quantization noise
– Strong signals become non-linear
– Sampling theorem violated!
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26Quantization Noise
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27
Automatic Gain Control (AGC)

• Normally prior to sampling the amplitude level of each 
time series is adjusted so that quantization noise is 
minimized.

• This occurs on timescales very long compared to a 
sample interval.

• The magnitude of the amplitude is stored so that the 
true amplitudes can be reconstructed after 
correlation.
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28
The Correlation Coefficient

• The correlation coefficient,      measures the likeness of two time series 
in an amplitude independent manner:

• Normally the correlation coefficient is much less than 1

• Because of AGC, the correlator actually measures the correlation 
coefficient.  The visibility amplitude is restored by dividing by the AGC 
gain.
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29Van Vleck Correction

• At low correlation, 
quantization increases 
correlation

• Quantization causes 
predictable non-linearity 
at high correlation

• Correction must be 
applied to the real and 
imaginary parts of        
separately
– Thus the visibility phase is 

affected as well as the 
amplitude
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30The Delay Model

• is the difference between the geometric delays of 
antenna    and antenna   .  It can be + or - .

• The delay center moves across the sky
– is changing constantly

• Fringes at the delay center are stopped.
– Long time integrations can be done
– Wide bandwidths can be used

• Simple delay models incorporate:
– Antenna locations
– Source position
– Earth orientation

• VLBI delay models must include much more!



G. Taylor, Astr 423 at UNM

31Pulsar Gating

• Pulsars emit regular pulses with small duty cycle
• Period in range 1 ms to 8 s;
• Blanking during off-pulse improves sensitivity
• Propagation delay is frequency dependent
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32The [old] VLBA Correlator
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33VLBA Multiply Accumulate (MAC) Card
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34[Old] VLA MAC Card
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35
BEE2-based Correlator

• BEE2: FPGA-based, scalable, modular, 
upgradeable signal processing system 
for radio astronomy developed at 
Berkeley

• ROACH2 boards at LWA-SV
• Being used for several projects

– 300-station FX correlator for EOR 
telescope (HERA)

– 288-station correlator for LWA-OVRO
• Modest hardware cost ($15k/ROACH2 + 

switch)
– LWA-SV uses 16 ROACH2 + 7 GPU 

servers
• Real effort is in the FPGA “software”

ROACH board

IBOB:  Internet BreakOut Board
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36The VLA WIDAR Correlator

• XF architecture duplicated 64 times, or “FXF”
– Four 2GHz basebands per polarization (3 bit sampling)
– Digital filterbank makes 16 subbands per baseband
– 16,384 channels/baseline at full sensitivity
– 4 million channels with less bandwidth!

• Initially will support 32 stations with plans for 48
• 2 stations at 25% bandwidth or 4 stations at 6.25% 

bandwidth can replace 1 station input
• Correlator efficiency is about 95%

– Compare to 81% for VLA
• VLBI and LWA ready
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37
Basic Correlator Stages for the LWA

1. Correlate LWA1 beams with single dipoles at 
LWA1 and LWA-SV  (success!)

2. Correlate LWA1 and LWA-SV using LSL and 
supercorrelator.py

3. Digitize VLA dishes and correlate with LWA1 
and LWA-SV (works!) on LWAUCF with LSL 
supercorrelator.py

4. Correlate ~10 LWA stations (the “swarm”) 
use DifX software correlator

5. Correlate ~50 stations (the “hive”) go to GPU 
based correlator?
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38
Current LWA Correlator



G. Taylor, Astr 423 at UNM

Further Reading

• http://www.nrao.edu/whatisra/mechanisms.shtml
• http://www.nrao.edu/whatisra/
• www.nrao.edu

• Synthesis Imaging in Radio Astronomy 
• ASP Vol 180, eds Taylor, Carilli & Perley

http://www.nrao.edu/whatisra/mechanisms.shtml
http://www.nrao.edu/whatisra/
http://www.nrao.edu

