

Cross Correlators

Jayce Dowell/Greg Taylor

University of New Mexico

Astronomy 423 at UNM Radio Astronomy

Announcements

- VLA observing tonight or tomorrow?
- LWA observing?
- Interferometry by Thompson, Moran & Swenson:
- https://www.dropbox.com/s/tpt4l6tlner32zb/2017_book_in terferometryandsynthesisinra.pdf?dl=0
- Exam 1 on Wednesday, March 3
- ALMA interferometry school Mar 15-26

Announcements

- ALMA interferometry school Mar 15-26
 - 1) ALMA Basics, Cycle 8 Capabilities
 - 2) Interferometry Basics
 - 3) New Proposal Review
 - 4) The OT
 - 5) ALMA Data Products
 - 6) CASA Simulations
 - 7) What's new in CASA
 - 8) Science-ready Data Products
 - 9) Imaging with CASA

Outline

- Re-cap of interferometry
 - What is a correlator?
- The correlation function
- Simple correlators
- Spectral line correlators
- Details
 - Sampling and quantization
 - Delay model
- The VLA and LWA correlators

This lecture is complementary to Chapter 4 of ASP 180 and is based on a lecture by Walter Brisken

Re-cap of Interferometry

- What are we fundamentally trying to measure?
- How do we accomplish this in a traditional telescope?
 - Optical or radio
- What changes when we go to a interferometer?
 - A "sparse" telescope
- What do visibilities tell us about the sky?

A correlator is a hardware or software device that combines sampled voltage time series from one or more antennas to produce sets of complex visibilities, V_{ij} .

- Visibilities are in general a function of
 - Frequency
 - Antenna pair
 - Time
- They are used for
 - Imaging
 - Spectroscopy / polarimetry
 - Astrometry

The Correlation Function

For continuous functions, f and g, the cross-correlation is defined as:

$$(f \star g)(t) \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} f^*(\tau) g(t+\tau) d\tau,$$

where f * denotes the complex conjugate of f.

$$C_{ij}(\tau) = \langle v_i(t)v_j(t+\tau)\rangle_T$$

- If i=j it is an auto-correlation (AC). Otherwise it is a cross-correlation (CC).
- Useful for
 - Determining timescales (CC and AC)
 - Motion detection (2-D CC)
 - Optical character recognition (2-D CC)
 - Pulsar timing
 - Template matching (CC)
 - Also called "matched filtering"

$$C_{ij}(\tau) = \langle v_i(t)v_j(t+\tau)\rangle_T$$

$$v_i(t) \longrightarrow \boxed{\frac{1}{T} \int_0^T (\cdot) dt} \longrightarrow C_{ij}$$

$$v_j(t) \longrightarrow \boxed{\frac{1}{T} \int_0^T (\cdot) dt}$$

What astronomers really want is the complex visibility

$$V_{ij} = \langle E_i(t)E_j^*(t+\tau) \rangle$$

where the real part of $E_i(t)$ is the voltage measured by antenna i.

So what is the imaginary part of $E_i(t)$?

It is the same as the real part but with each frequency component *phase* lagged by 90 degrees.

$$E_i(t) = v_i(t) + \frac{i}{\pi} \int_{-\infty}^{\infty} \frac{v_i(t')}{t - t'} dt'$$

$$V_{ij} = \langle v_i(t)v_j(t+\tau)\rangle + i \langle \mathcal{H} [v_i(t)] v_j(t+\tau)\rangle$$

Spectral Line Correlators

- Chop up bandwidth for
 - Calibration
 - Bandpass calibration
 - Fringe fitting
 - Spectroscopy
 - Wide-field imaging
 - (Its all Spectral Line these days)
- Conceptual version
 - Build analog filter bank
 - Attach a complex correlator to each filter

Practical Spectral Line Correlators

- Use a single filter / sampler
 - Easier to calibrate
 - Practical, up to a point
- The FX architecture
 - F: Replace filterbank with digital Fourier transform
 - X: Use a complex-correlator for each frequency channel
 - Then integrate
- The XF architecture
 - X: Measure correlation function at many lags
 - Integrate
 - F: Fourier transform
- Other architectures possible

XF correlators measure lags over a finite delay range

$$V_{ij}(\tau) = \langle v_i(t)v_j(t+\tau)\rangle \cdot \Box \left(\frac{t}{N\Delta t}\right)$$

Results in convolved visibility spectrum

$$V_{ij}(\nu) = \mathcal{F}\left[\langle v_i(t)v_j(t+\tau)\rangle \cdot \sqcap \left(\frac{t}{N\Delta t}\right)\right]$$
$$= \mathcal{F}\left[\langle v_i(t)v_j(t+\tau)\rangle\right] \star \operatorname{sinc}(N\Delta t \nu)$$

Multiply lag spectrum by Hanning taper function

$$H(\tau) = \frac{1}{2} \left(1 + \cos \frac{\pi \tau}{N \Delta t} \right)$$

This is equivalent to convolution of the spectrum by

$$H(\nu) = \delta(\nu) - \frac{1}{2}\delta\left(\nu - \frac{1}{2N\Delta t}\right) - \frac{1}{2}\delta\left(\nu + \frac{1}{2N\Delta t}\right)$$

Note that sensitivity and spectral resolution are reduced.

- Spectrum is available before integration
 - Can apply fractional sample delay per channel
 - Can apply pulsar gate per channel
- Most of the digital parts run N times slower than the sample rate
- Fewer computations (compared to XF)

FX Spectral Response

FX Correlators derive spectra from truncated time series

$$\begin{aligned} v(\nu) &= & \mathcal{F}\left[v(t) \cdot \sqcap\left(\frac{t}{N\Delta t}\right)\right] \\ &= & \mathcal{F}\left[v(t)\right] \star \mathcal{F}\left[\sqcap\left(\frac{t}{N\Delta t}\right)\right] \\ &\propto & \mathcal{F}\left[v(t)\right] \star \operatorname{sinc}\left(N\Delta t\nu\right) \end{aligned}$$

Results in convolved visibility spectrum

$$V_{ij}(\nu) = \langle (\mathcal{F}[v_i(t)] \star \operatorname{sinc}(N\Delta t\nu)) (\mathcal{F}[v_j(t)] \star \operatorname{sinc}(N\Delta t\nu))^* \rangle$$

= $\langle \mathcal{F}[v_i(t)] \mathcal{F}[v_j(t)]^* \rangle \star \operatorname{sinc}^2(N\Delta t\nu)$

- $\{v_i(t)\}$ are real-valued time series sampled at "uniform" intervals, Δt .
- The sampling theorem allows this to accurately reconstruct a bandwidth of $\Delta \nu = \frac{1}{2\Delta t}$.
- Sampling involves quantization of the signal
 - Quantization noise
 - Strong signals become non-linear
 - Sampling theorem violated!

Automatic Gain Control (AGC)

- Normally prior to sampling the amplitude level of each time series is adjusted so that quantization noise is minimized.
- This occurs on timescales very long compared to a sample interval.
- The magnitude of the amplitude is stored so that the true amplitudes can be reconstructed after correlation.

The Correlation Coefficient

• The correlation coefficient, ρ_{ij} measures the likeness of two time series in an amplitude independent manner:

$$\rho_{ij} = \frac{|V_{ij}|}{\sqrt{V_{ii}V_{jj}}}$$

- Normally the correlation coefficient is much less than 1
- Because of AGC, the correlator actually measures the correlation coefficient. The visibility amplitude is restored by dividing by the AGC gain.

- At low correlation, quantization increases correlation
- Quantization causes predictable non-linearity at high correlation V_{ij}
- Correction must be applied to the real and imaginary parts of separately
 - Thus the visibility phase is affected as well as the amplitude

The Delay Model

- τ is the difference between the geometric delays of antenna j and antenna j. It can be + or .
- The *delay center* moves across the sky
 - T is changing constantly
- Fringes at the delay center are stopped.
 - Long time integrations can be done
 - Wide bandwidths can be used
- Simple delay models incorporate:
 - Antenna locations
 - Source position
 - Earth orientation
- VLBI delay models must include much more!

Pulsar Gating

- Pulsars emit regular pulses with small duty cycle
- ullet Period in range 1 ms to 8 s; $\Delta t \ll P_{
 m pulsar} < T$
- Blanking during off-pulse improves sensitivity
- Propagation delay is frequency dependent

The University of New Mexico

The [old] VLBA Correlator

VLBA Multiply Accumulate (MAC) Card

[Old] VLA MAC Card

BEE2-based Correlator

- BEE2: FPGA-based, scalable, modular, upgradeable signal processing system for radio astronomy developed at Berkeley
- ROACH2 boards at LWA-SV
- Being used for several projects
 - 300-station FX correlator for EOR telescope (HERA)
 - 288-station correlator for LWA-OVRO
- Modest hardware cost (\$15k/ROACH2 + switch)
 - LWA-SV uses 16 ROACH2 + 7 GPU servers
- Real effort is in the FPGA "software"

- XF architecture duplicated 64 times, or "FXF"
 - Four 2GHz basebands per polarization (3 bit sampling)
 - Digital filterbank makes 16 subbands per baseband
 - 16,384 channels/baseline at full sensitivity
 - 4 million channels with less bandwidth!
- Initially will support 32 stations with plans for 48
- 2 stations at 25% bandwidth or 4 stations at 6.25% bandwidth can replace 1 station input
- Correlator efficiency is about 95%
 - Compare to 81% for VLA
- VLBI and LWA ready

Basic Correlator Stages for the LWA

- 1. Correlate LWA1 beams with single dipoles at LWA1 and LWA-SV (success!)
- 2. Correlate LWA1 and LWA-SV using LSL and supercorrelator.py
- 3. Digitize VLA dishes and correlate with LWA1 and LWA-SV (works!) on LWAUCF with LSL supercorrelator.py
- 4. Correlate ~10 LWA stations (the "swarm") use DifX software correlator
- 5. Correlate ~50 stations (the "hive") go to GPU based correlator?

Current LWA Correlator

eLWA Correlator Status

System	Status	Last Updated
Dispatcher	Running	1 minute(s)
LWA-SV	Running	1 minute(s)
LWA1	Running	1 minute(s)

Project	Observation Date	Raw Size	Status
20B-296, 38964945	2021/02/09 07:24 UTC	13.347 TB	completed for 6 days, 14:39:24
20B-252, 38964902	2021/02/14 19:12 UTC	4.595 TB	completed for 6 days, 13:42:12
20B-296, 39179170	2021/02/15 08:53 UTC	6.019 TB	completed for 4 days, 13:09:36

Last retrieved 0 minutes ago

Disk Usage

Node	Mount Point	Usage	Free
lwaucf1	/data/local	11%	16T
lwaucf2	/data/local	21%	14T
lwaucf3	/data/local	35%	12T
All	/home	38%	2.2T
All	/data/network	88%	18T

Last retrieved 0 hour(s), 3 minute(s) ago.

G. Taylor, Astr 423 at UNM

Further Reading

- http://www.nrao.edu/whatisra/mechanisms.shtml
- http://www.nrao.edu/whatisra/
- www.nrao.edu
- Synthesis Imaging in Radio Astronomy
- ASP Vol 180, eds Taylor, Carilli & Perley

