

Cross Correlators

Jayce Dowell/Greg Taylor University of New Mexico

Astronomy 423 at UNM Radio Astronomy

Announcements

- LWA observing underway
- Interferometry by Thompson, Moran & Swenson:
- <u>https://www.dropbox.com/</u> <u>s/tpt4l6tlner32zb/2017_bo</u>
 <u>ok_interferometryandsynt</u>
 <u>hesisinra.pdf?dl=0</u>
- Exam 1 on Wednesday, March 5
- Data showing up on /data/network/recent_data /astr423

eLWA Correlator Status

System	Status	Last Updated
Dispatcher	Running	0 minutes ago
LWA1	Running	0 minutes ago
LWA-SV	Running	0 minutes ago
LWA-NA	Running	0 minutes ago

Project	Observation Date	Raw Size	Status	
DW005, 9	2024/12/14 02:00 UTC	3.106 TB	hold for 36 days, 18:47:49	
DW005, 8	2024/12/14 02:00 UTC	3.883 TB	hold for 27 days, 21:24:46	
DW005, 11	2024/12/20 01:00 UTC	3.106 TB	hold for 47 days, 23:58:35	
DW005, 10	2024/12/20 01:00 UTC	4.142 TB	hold for 27 days, 21:24:39	
DW005, 12	2024/12/27 02:00 UTC	2.330 TB	hold for 47 days, 1:23:26	
DW005, 13	2024/12/27 02:00 UTC	2.330 TB	hold for 47 days, 1:23:20	
DT005, 267	2025/02/08 03:00 UTC	6.091 TB	failed-c for 15:01:53	
DT005, 268	2025/02/09 04:20 UTC	6.210 TB	correlating for 14:47:50	
DT005, 269	2025/02/10 08·50 LITC	6 210 TP	queued for 1 days, 21:59:59	
	2023/02/10 00:30 010	0.21010	queued for T days, 21:59:59	
DT005, 270	2025/02/12 11:40 UTC	5.306 TB	completed for 3 days, 22:20:03	
DT005, 270 DT005, 271	2025/02/12 11:40 UTC 2025/02/12 23:20 UTC	5.306 TB 6.210 TB	completed for 3 days, 21:59:59 completed for 3 days, 22:20:03 completed for 5 days, 3:06:37	
DT005, 270 DT005, 271 DT005, 272	2025/02/12 11:40 UTC 2025/02/12 23:20 UTC 2025/02/14 12:30 UTC	5.306 TB 6.210 TB 6.210 TB	completed for 3 days, 22:20:03 completed for 5 days, 3:06:37 completed for 4 days, 8:08:27	

Outline

- Re-cap of interferometry
 - What is a correlator?
- The correlation function
- Simple correlators
- Spectral line correlators
- Details
 - Sampling and quantization
 - Delay model
- The VLA and LWA correlators

This lecture is complementary to Chapter 4 of ASP 180 and is based on a lecture by Walter Brisken

G. Taylor, Astr 423 at UNM

Re-cap of Interferometry

- What are we fundamentally trying to measure?
- How do we accomplish this in a traditional telescope?
 Optical or radio
- What changes when we go to a interferometer?
 A "sparse" telescope
- What do visibilities tell us about the sky?

A correlator is a hardware or software device that combines sampled voltage time series from one or more antennas to produce sets of complex visibilities, V_{ij} .

- Visibilities are in general a function of
 - Frequency
 - Antenna pair
 - Time
- They are used for
 - Imaging
 - Spectroscopy / polarimetry
 - Astrometry

The Correlation Function

For continuous functions, f and g, the cross-correlation is defined as:

$$(f \star g)(t) \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} f^*(\tau) g(t+\tau) d\tau,$$

where f * denotes the complex conjugate of f.

6

The University of New Mexico

Cross Correlation

G. Taylor, Astr 423 at UNM

7

Correlation and Convolution Functions

8

The Correlation Function

$$C_{ij}(\tau) = \langle v_i(t)v_j(t+\tau)\rangle_T$$

- If i = j it is an auto-correlation (AC). Otherwise it is a cross-correlation (CC).
- Useful for
 - Determining timescales (CC and AC)
 - Motion detection (2-D CC)
 - Optical character recognition (2-D CC)
 - Pulsar timing
 - Template matching (CC)
 - Also called "matched filtering"

A Real (valued) Cross Correlator

Visibilities

What astronomers really want is the complex visibility

$$V_{ij} = \left\langle E_i(t) E_j^*(t+\tau) \right\rangle$$

where the real part of $E_i(t)$ is the voltage measured by antenna i.

So what is the imaginary part of $E_i(t)$?

It is the same as the real part but with each frequency component *phase* lagged by 90 degrees.

$$E_i(t) = v_i(t) + \frac{i}{\pi} \int_{-\infty}^{\infty} \frac{v_i(t')}{t - t'} dt'$$

The Complex Correlator

$$V_{ij} = \langle v_i(t)v_j(t+\tau) \rangle + i \langle \mathcal{H} [v_i(t)] v_j(t+\tau) \rangle$$

Spectral Line Correlators

• Chop up bandwidth for

- Calibration
 - Bandpass calibration
 - Fringe fitting
- Spectroscopy
- Wide-field imaging
- (Its all Spectral Line these days)
- Conceptual version
 - Build analog filter bank
 - Attach a complex correlator to each filter

Practical Spectral Line Correlators

- Use a single filter / sampler
 - Easier to calibrate
 - Practical, up to a point
- The FX architecture
 - F: Replace filterbank with digital Fourier transform
 - X : Use a complex-correlator for each frequency channel
 - Then integrate
- The XF architecture
 - X : Measure correlation function at many lags
 - Integrate
 - F : Fourier transform
- Other architectures possible

The University of New Mexico

The XF Correlator

XF Spectral Response

• XF correlators measure lags over a finite delay range

$$V_{ij}(\tau) = \langle v_i(t)v_j(t+\tau)\rangle \cdot \sqcap \left(\frac{t}{N\Delta t}\right)$$

• Results in convolved visibility spectrum

$$V_{ij}(\nu) = \mathcal{F}\left[\langle v_i(t)v_j(t+\tau) \rangle \cdot \sqcap \left(\frac{t}{N\Delta t}\right) \right]$$
$$= \mathcal{F}\left[\langle v_i(t)v_j(t+\tau) \rangle \right] \star \operatorname{sinc}\left(N\Delta t\,\nu\right)$$

XF Spectral Response (2)

Hanning Smoothing

• Multiply lag spectrum by Hanning taper function

$$H(\tau) = \frac{1}{2} \left(1 + \cos \frac{\pi \tau}{N \Delta t} \right)$$

• This is equivalent to convolution of the spectrum by $H(\nu) = \delta(\nu) - \frac{1}{2}\delta\left(\nu - \frac{1}{2N\Delta t}\right) - \frac{1}{2}\delta\left(\nu + \frac{1}{2N\Delta t}\right)$

Note that sensitivity and spectral resolution are reduced.

Hanning Smoothing (2)

NF20

20

The University of New Mexico

FX Correlators

- Spectrum is available **before integration**
 - Can apply fractional sample delay per channel
 - Can apply pulsar gate per channel
- Most of the digital parts run *N* times slower than the sample rate
- Fewer computations (compared to XF)

The FX correlator

FX Spectral Response

• FX Correlators derive spectra from truncated time series

$$\begin{aligned} v(\nu) &= \mathcal{F}\left[v(t) \cdot \sqcap \left(\frac{t}{N\Delta t}\right)\right] \\ &= \mathcal{F}\left[v(t)\right] \star \mathcal{F}\left[\sqcap \left(\frac{t}{N\Delta t}\right)\right] \\ &\propto \mathcal{F}\left[v(t)\right] \star \operatorname{sinc}\left(N\Delta t\nu\right) \end{aligned}$$

Results in convolved visibility spectrum

 $V_{ij}(\nu) = \left\langle \left(\mathcal{F}\left[v_i(t)\right] \star \operatorname{sinc}\left(N\Delta t\nu\right)\right) \left(\mathcal{F}\left[v_j(t)\right] \star \operatorname{sinc}\left(N\Delta t\nu\right)\right)^* \right\rangle \\ = \left\langle \mathcal{F}\left[v_i(t)\right] \mathcal{F}\left[v_j(t)\right]^* \right\rangle \star \operatorname{sinc}^2\left(N\Delta t\nu\right)$

FX Spectral Response (2)

24

The University of New Mexico

Time Series, Sampling, and Quantization

- $\{v_i(t)\}$ are real-valued time series sampled at "uniform" intervals, Δt .
- The sampling theorem allows this to accurately reconstruct a bandwidth of $\Delta \nu = \frac{1}{2\Delta t}$.
- Sampling involves quantization of the signal
 - Quantization noise
 - Strong signals become non-linear
 - Sampling theorem violated!

Quantization Noise

26

The University of New Mexico

Automatic Gain Control (AGC)

- Normally prior to sampling the amplitude level of each time series is adjusted so that quantization noise is minimized.
- This occurs on timescales very long compared to a sample interval.
- The magnitude of the amplitude is stored so that the true amplitudes can be reconstructed after correlation.

The Correlation Coefficient

• The correlation coefficient, ρ_{ij} measures the likeness of two time series in an amplitude independent manner:

$$\rho_{ij} = \frac{|V_{ij}|}{\sqrt{V_{ii}V_{jj}}}$$

- Normally the correlation coefficient is much less than 1
- Because of AGC, the correlator actually measures the correlation coefficient. The visibility amplitude is restored by dividing by the AGC gain.

Van Vleck Correction

- At low correlation, quantization *increases correlation*
- Quantization causes predictable non-linearity at high correlation V_{ij}
- Correction must be applied to the real and imaginary parts of separately
 - Thus the visibility phase is affected as well as the amplitude

The Delay Model

- τ is the difference between the geometric delays of antenna j and antenna j. It can be + or .
- The *delay center* moves across the sky
 - T is changing constantly
- Fringes at the delay center are stopped.
 - Long time integrations can be done
 - Wide bandwidths can be used
- Simple delay models incorporate:
 - Antenna locations
 - Source position
 - Earth orientation
- VLBI delay models must include much more!

Pulsar Gating

- Pulsars emit regular pulses with small duty cycle
- Period in range 1 ms to 8 s; $\Delta t \ll P_{
 m pulsar} < T$
- Blanking during off-pulse improves sensitivity
- Propagation delay is frequency dependent

The [old] VLBA Correlator

G. Taylor, Astr 423 at UNM

VLBA Multiply Accumulate (MAC) Card

[Old] VLA MAC Card

34

BEE2-based Correlator

- BEE2: FPGA-based, scalable, modular, upgradeable signal processing system for radio astronomy developed at Berkeley
- ROACH2 boards at LWA-SV
- Being used for several projects
 - 300-station FX correlator for EOR telescope (HERA)
 - 288-station correlator for LWA-OVRO
- Modest hardware cost (\$15k/ROACH2 + switch)
 - LWA-SV uses 16 ROACH2 + 7 GPU servers
- Real effort is in the FPGA "firmware"

SNAP2 board

ROACH board

The VLA WIDAR Correlator

- XF architecture duplicated 64 times, or "FXF"
 - Four 2GHz basebands per polarization (3 bit sampling)
 - Digital filterbank makes 16 subbands per baseband
 - 16,384 channels/baseline at full sensitivity
 - 4 million channels with less bandwidth!
- Initially will support 32 stations with plans for 48
- 2 stations at 25% bandwidth or 4 stations at 6.25% bandwidth can replace 1 station input
- Correlator efficiency is about 95%
 - Compare to 81% for VLA
- VLBI and LWA ready

Basic Correlator Stages for the LWA

- 1. Correlate LWA1 beams with single dipoles at LWA1 and LWA-SV (success!)
- 2. Correlate LWA1 and LWA-SV using LSL and supercorrelator.py
- 3. Digitize VLA dishes and correlate with LWA1 and LWA-SV (works!) on LWAUCF with LSL supercorrelator.py
- 4. Correlate ~10 LWA stations (the "swarm") using GPU based correlator

Current LWA Correlator

eLWA Correlator Status

System	Status	Last Updated
Dispatcher	Running	3 minutes ago
LWA1	Running	3 minutes ago
LWA-SV	Running	3 minutes ago
LWA-NA	Running	3 minutes ago

Project	Observation Date	Raw Size	Status
DW005, 9	2024/12/14 02:00 UTC	3.106 TB	hold for 39 days, 22:17:49
DW005, 8	2024/12/14 02:00 UTC	3.883 TB	hold for 31 days, 0:54:46
DW005, 11	2024/12/20 01:00 UTC	3.106 TB	hold for 51 days, 3:28:36
DW005, 10	2024/12/20 01:00 UTC	4.142 TB	hold for 31 days, 0:54:40
DW005, 12	2024/12/27 02:00 UTC	2.330 TB	hold for 50 days, 4:53:26
DW005, 13	2024/12/27 02:00 UTC	2.330 TB	hold for 50 days, 4:53:20
DT005, 267	2025/02/08 03:00 UTC	6.091 TB	failed-c for 3 days, 18:31:53
DT005, 268	2025/02/09 04:20 UTC	6.210 TB	completed for 2 days, 19:36:23
DT005, 269	2025/02/10 08:50 UTC	6.210 TB	completed for 2 days, 5:02:25
DA004, 8787	2025/02/20 07:10 UTC	4.529 TB	completed for 1 days, 16:45:10
DA004, 999	2025/02/22 18:00 UTC	3.882 TB	completed for 7:44:35
DA004, 423	2025/02/23 11:34 UTC	3.973 TB	correlating for 2:17:48

G. Taylor, Astr 423 at UNM

Current LWA Correlator

Disk Usage

Node	Mount Point	Usage	Free
lwaucf1	/data/local	12T	5.4T
lwaucf2	/data/local	5.2T	13T
lwaucf3	/data/local	13T	4.5T
All	/home	1.5T	5.4T
All	/data/network	153T	55T
lwaucf6	/data/local	1.3T	3.9T

Last retrieved 6 minutes ago.

↑ Top

Temperatures

Further Reading

- http://www.nrao.edu/whatisra/mechanisms.shtml
- <u>http://www.nrao.edu/whatisra/</u>
- <u>www.nrao.edu</u>
- Synthesis Imaging in Radio Astronomy
- ASP Vol 180, eds Taylor, Carilli & Perley

