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Announcements

• LWA scheduling in progress
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Famous Interferometers
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Outline

• Antennas – Our Connection to the Universe
• The Monochromatic, Stationary Interferometer
• The Relation between Brightness and Visibility
• Coordinate Systems
• Making Images
• The Consequences of Finite Bandwidth
• Adding Time Delay and Motion
• Heterodyning
• The Consequences of Finite Time Averaging
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Telescopes – our eyes (ears?) on the Universe

• Nearly all we know of our universe is through 
observations of electromagnetic radiation.  

• The purpose of an astronomical telescope is to 
determine the characteristics of this emission:
– Angular distribution
– Frequency distribution
– Polarization characteristics
– Temporal characteristics

• Telescopes are sophisticated, but imperfect devices, 
and proper use requires an understanding of their 
capabilities and limitations.  
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Beam Pattern Origin

An antenna’s 
response is a result 
of  incoherent 
phase summation 
at the focus.

First null will occur 
at the angle where 
the extra distance 
for a wave at center 
of antenna is in 
anti-phase with that 
from edge.  

On-axis
incidence

Off-axis
incidence
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Getting Better Resolution

• The 25-meter aperture of a VLA antenna provides insufficient resolution 
for modern astronomy.
– 30 arcminutes at 1.4 GHz, when we want 1 arcsecond or better!

• The trivial solution of building a bigger telescope is not practical.  1 
arcsecond resolution at λ = 20 cm requires a 40 kilometer aperture. 
– The world’s largest fully steerable antenna (operated by the NRAO at Green 

Bank, WV) has an aperture of only 100 meters ⇒ 4 times better resolution 
than a VLA antenna.

• As this is not practical, we must consider a means of synthesizing the 
equivalent aperture, through combinations of elements.

• This method, termed ‘aperture synthesis’, was developed in the 1950s 
in England and Australia.  Martin Ryle (University of Cambridge) 
earned a Nobel Prize for his contributions. 
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If the source emission is 
unchanging, there is no 
need to collect all of the 
incoming rays at one time.

One could imagine 
sequentially combining 
pairs of signals.  If we break
the aperture into N sub-
apertures, there will be 
N(N−1)/2 pairs to combine.

This approach is the basis of 
aperture synthesis.

Aperture Synthesis – Basic Concept



The Stationary, Monochromatic Interferometer

• A small (but finite) frequency width, and no motion. 
• Consider radiation from a small solid angle dW, from direction s.
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In Phase:
τg = nλ/c

Quadrature Phase:
τg = (2n+1)λ/4c

Anti-Phase:
τg = (2n+1)λ/2c

Examples of the Signal Multiplications
The two input signals are shown in red and blue.  
The desired coherence is the average of the product (black trace)
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Signal Multiplication, cont.
• The averaged signal is independent of the time t, but is dependent 

on the lag, τg – a function of direction, and hence on the distribution 
of the brightness.  

• In this expression, we use ‘V’ to denote the voltage of the signal.  
This depends upon the source intensity by:

•    
•    so the term V1V2 is proportional to source intensity, Iν.
•    (measured in Watts.m−2.Hz−1.ster−1).
• The strength of the product is also dependent on the antenna areas 

and electronic gains – but these factors can be calibrated for.
• To determine the dependence of the response over an extended 

object, we integrate over solid angle. 
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The ‘Cosine’ Correlator Response

• The response from an extended source is obtained by 
integrating the response over the solid angle of the sky:

•  where I have ignored (for now) any frequency 
dependence.  

Key point:  the vector s is a function of direction, so the 
phase in the cosine is dependent on the angle of arrival.  

This expression links what we want – the source 
brightness on the sky) (Iν(s)) – to something we can 
measure (RC, the interferometer response).
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A Schematic Illustration
•The COS correlator can be thought of ‘casting’ a sinusoidal fringe 
pattern, of angular scale λ/B radians, onto the sky. The correlator 
multiplies the source brightness by this wave pattern, and integrates 
(adds) the result over the sky.  

Orientation set by baseline 
geometry.
Fringe separation set by baseline 
length and wavelength. 

−   +   −   +  −  +   −     Fringe Sign

λ/B rad.

Source
brightness
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Coordinate System
14

pynterferometer demo
Avison & George 2012
Or
https://interferometer-demo.streamlit.app/
By Nicholas Kern

https://interferometer-demo.streamlit.app/
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Odd and Even Functions
• But the measured quantity, Rc, is insufficient – it is only 

sensitive to the ‘even’ part of the brightness, IE(s).
• Any real function, I, can be expressed as the sum of two 

real functions which have specific symmetries:

– An even part:  IE(x,y) = (I(x,y) + I(-x,-y))/2 = IE(-x,-y) 

– An odd part:    IO(x,y) = (I(x,y) – I(-x,-y))/2 = -IO(-x,-y) 

= +
I IE IO
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Recovering the ‘Odd’ Part:  The SIN Correlator

• The integration of the cosine response, Rc, over the source brightness is 
sensitive to only the even part of the brightness:

•      since the integral of an odd function (IO) with an even function (cos x) 
is zero.  

• To recover the ‘odd’ part of the intensity, IO, we need an ‘odd’ 
coherence pattern.  Let us replace the ‘cos’ with ‘sin’ in the integral:

•      since the integral of an even times an odd function is zero.  To obtain 
this necessary component, we must make a ‘sine’ pattern.



Making a SIN correlator

• A small (but finite) frequency width, and no motion. 
• Consider radiation from a small solid angle dW, from direction s.

X

s s

An antennab
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Define the Complex Visibility
• We now DEFINE a complex function, V, to be the complex sum of the two 

independent correlator outputs:

•  where 

• This gives us a beautiful and useful relationship between the source 
brightness, and the response of an interferometer:

• Although it may not be obvious (yet), this expression can be inverted to 
recover I(s) from V(b).



Picturing the Visibility
• The intensity, Iν,  is in black, the ‘fringes’ in red.  The visibility is 

the net dark green area.
RC RS

Long
Baseline

Short
Baseline
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• The Visibility is a function of the source structure and the 
interferometer baseline.  

• The Visibility is NOT a function of the absolute position of the 
antennas (provided the emission is time-invariant, and is located 
in the far field).   

• The Visibility is Hermitian:  V(u,v) = V*(-u,-v).  This is a 
consequence of the intensity being a real quantity.  

• There is a unique relation between any source brightness 
function, and the visibility function.  

• Each observation of the source with a given baseline length 
provides one measure of the visibility.  

• Sufficient knowledge of the visibility function (as derived from an 
interferometer) will provide us a reasonable estimate of the 
source brightness.  

Comments on the Visibility
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Examples of Visibility Functions
• Top row:  1-dimensional even brightness distributions.  
• Bottom row:  The corresponding real, even, visibility functions.



G. Taylor, Astr 423 at UNM

22
Geometry – the perfect, and not-so-perfect

• To give better understanding, we now specify the geometry.

• Case A:  A 2-dimensional measurement plane.  

• Let us imagine the measurements of Vn(b) to be taken entirely on a plane.  
Then a considerable simplification occurs if we arrange the coordinate 
system so one axis is normal to this plane.  

• Let (u,v,w) be the coordinate axes, with w normal to the plane.  All 
distances are measured in wavelengths.  Then, the components of the 
unit direction vector, s, are:

•      and

s = l,m,n( ) = l,m, 1− l2 − m2( )
dΩ = dldm 1− l2 − m2
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Direction Cosines
• The unit direction vector s
• is defined by its projections
• on the (u,v,w) axes.  These 
• components are called the
• Direction Cosines.

The baseline vector b is specified by its coordinates (u,v,w) 
(measured in wavelengths).   

u

v

w

s

α β
γ

l m
b

n
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The 2-d Fourier Transform Relation
• Then, νb.s/c = ul + vm + wn = ul + vm,   from which we find, 

•  
• which is a 2-dimensional Fourier transform between the projected 

brightness: 

•      and the spatial coherence function (visibility): Vν(u,v).

• And we can now rely on a century of effort by mathematicians on how to 
invert this equation, and how much information we need to obtain an 
image of sufficient quality.  Formally,

• With enough measures of V, we can derive I.  
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• Which interferometers can use this special geometry?
– a) Those whose baselines, over time, lie on a plane (any plane).  

• All E-W interferometers are in this group.  For these, the w-coordinate 
points to the NCP.  
– WSRT (Westerbork Synthesis Radio Telescope)
– AT (Australia Telescope)
– Cambridge 5km telescope (almost).  

– b) Any coplanar array, at a single instance of time.  
– VLA or GMRT in snapshot (single short observation) mode.    

• What's the ‘downside’ of this geometry?
– Full resolution is obtained only for observations that are in the w-

direction.  Observations at other directions lose resolution.
• E-W interferometers have no N-S resolution for observations at the 

celestial equator!!!
• A VLA snapshot will have no ‘vertical’ resolution for objects on the 

horizon.

Interferometers with 2-d Geometry
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3-d Interferometers
• Case B:  A 3-dimensional measurement volume:

• But what if the interferometer does not measure the coherence function 
within a plane, but rather does it through a volume?  In this case, we adopt 
a slightly different coordinate system.  First we write out the full 
expression:  

•      (Note that this is not a 3-D Fourier Transform).
• Then, orient the coordinate system so that the w-axis points to the center 

of the region of interest, (u points east and v north) and make use of the 
small angle approximation:  

•      where θ is the polar angle from the center of the image.  The w-
component is the ‘delay distance’ of the baseline.  
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VLA Coordinate System

• w points to the source, u towards the east, and v towards the 
NCP.  The direction cosines l and m then increase to the east 
and north, respectively.

b s0s0

w

v
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3-d to 2-d

• The quadratic term in the phase can be neglected if it is much less than 
unity:  

• Or, in other words, if the maximum angle from the center is:

•                                                                           (angles in radians!)

•      then the relation between the Intensity and the Visibility again 
becomes a 2-dimensional Fourier transform:
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3-d to 2-d
•     where the modified visibility is defined as:

•      and is, in fact, the visibility we would have measured, had we been able 
to put the baseline on the w = 0 plane.   

• This coordinate system, coupled with the small-angle approximation, allows 
us to use two-dimensional transforms for any interferometer array. 

• How do we make images when the small-angle approximation breaks 
down?

•      That's a longer story, for another day.  (Short answer:  we know how to 
do this, and it takes a lot more computing).  
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Announcements

• Dustin’s new office hours: Tuesday 1-2pm in Lobby
• LWA scheduling in progress
• See LWA interferometry guide:
https://leo.phys.unm.edu/~gbtaylor/astr423/LWA_Swar
m_Interferometry.pdf

https://leo.phys.unm.edu/~gbtaylor/astr423/LWA_Swarm_Interferometry.pdf
https://leo.phys.unm.edu/~gbtaylor/astr423/LWA_Swarm_Interferometry.pdf


Picturing the Visibility
• The intensity, Iν,  is in black, the ‘fringes’ in red.  The visibility is 

the net dark green area.
RC RS

Long
Baseline

Short
Baseline
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We have shown that under certain (and attainable) 
assumptions about electronic linearity and narrow 
bandwidth, a complex interferometer measures the visibility, 
or complex coherence:

(u,v) are the projected baseline coordinates, 
measured in wavelengths, on a plane oriented facing the 
phase center, and
   (l,m) are the sines of the angles between the phase 
center and the emission, in the EW and NS directions, 
respectively.  

Making Images
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This is a Fourier transform relation, and it can be in 
general be solved, to give:

This relationship presumes knowledge of V(u,v) for all 
values of u and v.  In fact, we have a finite number, N, 
measures of the visibility, so to obtain an image, the 
integrals are replaced with a sum:

If we have Nv visibilities, and Nm cells in the image, we have
~NvNm calculations to perform – a number that can exceed 1012!

Making Images
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• The sum on the last page is in general complex, while 
the sky brightness is real.  What’s wrong?

• In fact, each measured visibility represents two 
visibilities, since V(-u,-v) = V*(u,v).  

• This is because interchanging two antennas leaves Rc 
unchanged, but changes the sign of Rs.  

• Mathematically, as the sky is real, the visibility must be 
Hermitian.  

• So we can modify the sum to read:

But Images are Real
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• The cosine represents a two-dimensional sinusoidal 
function in the image, with unit amplitude, and 
orientation given by:  α = tan-1(u/v).  

• The cosinusoidal sea on the image plane is multiplied 
by the visibility amplitude A, and a shifted by the 
visibility phase φn.  

• Each individual measurement adds a (shifted and 
amplified) cosinusoid to the image.

• The basic (raw, or dirty) map is the result of this 
summation process.  

• The actual process, including the use of FFTs, is 
covered in the ‘imaging’ lecture.  

Interpretation
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+

−

+−+

l

m

The rectangle below represents a piece of sky.  The solid 
red lines are the maxima of the sinusoids, the dashed lines 
their minima.  Two visibilities are shown, each with phase 
zero.

α

A simple example
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For a unit point source, all visibility amplitudes are 1 Jy, 
and all phases are zero.  The lower panel shows the response
when visibilities from 21 equally-spaced baselines are added.

The individual
visibilities are 
shown in the top
panel.  Their 
(incremental) sums
are shown in the
lower panel.

1-d Example:  Point-Source
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• For a centered 
square object, the 
visibility 
amplitudes 
decline with 
increasing 
baseline, and the 
phases are all 
zero or 180.

• Again, 21 
baselines are 
included.  

Example 2:  Square Source
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• Real interferometers must accept a range of frequencies (amongst 
other things, there is no power in an infinitesimal bandwidth)!  So we 
now consider the response of our interferometer over frequency. 

• To do this, we first define the frequency response functions, G(ν),  as 
the amplitude and phase variation of the signals paths over frequency.

• Then integrate:

The Effect of Bandwidth.

G

ν ν0

Δν
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The Effect of Bandwidth.

• If the source intensity does not vary over frequency 
width, we get

• where I have assumed the G(ν) are square, real, and of 
width Δν.  The frequency ν0 is the mean frequency within 
the bandwidth. 

• The fringe attenuation function, sinc(x), is defined as:

for x << 1
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The Bandwidth/FOV limit
• This shows that the source emission is attenuated by the function sinc(x), 

known as the ‘fringe-washing’ function. Noting that τg ~ (B/c) sin(θ) ~ 
Bθ/λν ~ (θ/θres)/ν, we see that the attenuation is small when 

• The ratio Δν/ν is the fractional bandwidth.  The ratio θ/θres is the source 
offset in units of the fringe separation, λ/B.  

• In words, this says that the attenuation is small if the fractional bandwidth 
times the angular offset in resolution units is less than unity.  Significant 
attenuation of the measured visibility is to be expected if the source offset is 
comparable to the interferometer resolution divided by the fractional 
bandwidth.
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Bandwidth Effect Example
• Finite Bandwidth causes loss of coherence at large angles, because the 

amplitude of the interferometer fringes are reduced with increasing angle 
from the delay center.
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• The trivial solution is to avoid observing large objects!  (Not 
helpful).

• Although there are computational methods which allow 
recovery of the lost amplitude, the loss in SNR is 
unavoidable.  

• The simple solution is to observe with a small bandwidth.  
But this causes loss of sensitivity.

• So, the best (but not cheapest!) solution is to observe with 
LOTS of narrow channels.  

• Modern correlators (VLA, VLBA, GMRT, ...) provide tens to 
hundreds of thousands of channels of appropriate width.  

Avoiding Bandwidth Losses

In practice
(from VLA
Status Summary)
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Adding Time Delay

• Another important consequence of observing with a 
finite bandwidth is that the sensitivity of the 
interferometer is not uniform over the sky.  

• The current analysis, when applied to a finite 
bandwidth interferometer, shows that only sources on 
a plane orthogonal to the interferometer baseline will 
be observed with full coherence.

• How can we recover the proper visibility for sources far 
from this plane?

• Add time delay to shift the maximum of the ‘sinc’ 
pattern to the direction of the source. 
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45The Stationary, Radio-Frequency Interferometer
with inserted time delay

X

s s

An antennab

τ g = b ⋅ s / c

V = V2 cos[ω (t − τ 0 )]V = V1 cos[ω (t − τ g)]

cos[ω (τ g − τ 0)]+ cos[2ωt −ω (τ g − τ 0)]( ) / 2

V1V2
2
cos[ω (τ g − τ 0)] =

V1V2
2
cos[2πυb ⋅(s− s0 ) / c]

t0

s0 s0

τ 0 = b ⋅ s0 / c tg

S0 = reference
        direction
S = general 
      direction
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Coordinates
• It should be clear from inspection that the results of the last section are 
reproduced, with the ‘fringes’ and the bandwidth delay pattern, now 
centered about the direction defined by τ − τg = 0.  The unattenuated field 
of view is as before:

•Δθ/θres<  ν/Δν

• Remembering the coordinate system discussed earlier, where the w axis 
points to the reference center (s0),  assuming the introduced delay is 
appropriate for this center, and that the bandwidth losses are negligible, 
we have:
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Extension to a Moving Source
• Inserting these, we obtain:

• The third term in the exponential is generally very small, and can be 
ignored in most cases, as discussed before. 

• The extension to a moving source (or, more usually, to an interferometer 
located on a rotating object) is elementary – the delay term τ changes 
with time, so as to keep the peak of the fringe-washing function on the 
center of the region of interest.  

• Also note that for a point object at the tracking center (l = m = 0), the 
phase is zero.  This is because the added delay has exactly matched the 
phase lag of the radiation on the lagged antenna.  
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Time-Averaging Loss
• We have assumed everywhere that the values of the visibility are 

obtained ‘instantaneously’.  This is of course not reasonable, for we 
must average over a finite time interval.

• The time averaging, if continued too long, will cause a loss of measured 
coherence which is quite analogous to bandwidth smearing.

• The fringe-tracking interferometer keeps the phase constant for emission 
from the phase-tracking center.  However, for any other position, the 
phase of a point of emission changes in time.  The relation is:

•      where θ is the source offset from the phase-tracking center.
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• Simple derivation of fringe frequency:

λ/Dλ/B

ωe

Time-Smearing Loss

• Light blue area is antenna 
primary beam on the sky.

• Fringes (black lines) rotate 
about the center at rate ωe.

• Time taken for a fringe to 
rotate by λ/B at angular 
distance θ is:                

t = (λ/B)/ωeθ > D/(ωeB)
• Fringe frequency is then       
νf = ωeB/D

D is antenna diameter

θ
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• The net visibility obtained after an integration time, t, 
is found by integration:

• As with bandwidth loss, the condition for minimal time 
loss is that the integration time be much less than the 
inverse fringe frequency:

• For VLA in A-configuration, t << 10 seconds

Time-averaging Loss
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• What is a good choice for the channel width and integration time when 
observing a source 300 arcseconds from the delay-tracking center at 50 MHz 
with the LWA Swarm assuming a maximum baseline length of 75 km and a 
station diameter of 100m?

Worksheet
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• The situation is the same as for bandwidth loss:
– One can do processing to account for the lost signal, 

but the SNR cannot be recovered.
– Only good solution is to reduce the integration time. 
– This makes for large databases, and more 

processing.

How to beat time smearing?

In practice
(from VLA
Status Summary)
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Consequence of IF Conversion

• This would be the end of the story (so far as the fundamentals are 
concerned) if all the internal electronics of an interferometer would work 
at the observing frequency (often called the ‘radio frequency’, or RF).

• Unfortunately, this cannot be done in general, as high frequency 
components are much more expensive, and generally perform more 
poorly, than low frequency components.  

• Thus, nearly all radio interferometers use ‘down-conversion’ to 
translate the radio frequency information from the ‘RF’, to a lower 
frequency band, called the ‘IF’ in the jargon of our trade.  

• For signals in the radio-frequency part of the spectrum, this can be done 
with almost no loss of information.  But there is an important side-effect 
from this operation, which we now review.    
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Downconversion

ωLO φLOX X

τ

X

τg

cos(ωRFt)

cos(ωIFt+φLO)
(ωRF=ωLO+ωIF)

cos(ωIFt−ωIFτ+φ)cos(ωIFt−ωRFτg)

Local
Oscillator

Phase
Shifter

Multiplier

Complex Correlator
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Phase Addition
• We want the phase of this output to be zero for emission from the 

reference direction:  τg = τ0.
• We also want to maximize the coherence from this same direction:  τ = 

τ0.
• We get both if we set:

• The reason this is necessary is that the delay, τ0, has been added in the 
IF portion of the signal path, rather than at the frequency at which the 
delay actually occurs. Thus, the physical delay needed to maintain 
broad-band coherence is present, but because it is added at the 
‘wrong’ frequency, an incorrect phase has been inserted, which must 
be corrected by addition of the ‘missing’ phase in the LO portion.  
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Further Reading

• http://www.nrao.edu/whatisra/mechanisms.shtml
• http://www.nrao.edu/whatisra/
• www.nrao.edu

• Synthesis Imaging in Radio Astronomy 
• ASP Vol 180, eds Taylor, Carilli & Perley

http://www.nrao.edu/whatisra/mechanisms.shtml
http://www.nrao.edu/whatisra/
http://www.nrao.edu

