

Antennas

Greg Taylor University of New Mexico

Astronomy 423 at UNM Radio Astronomy

LWA1 Pulsar Detections

J0030+0451 B1133+16 B0031-07 B1237+25 J1327+34J0034-0534 B0138+59 B1508+55 J0203+70 B1540-06 B0320+39 B1541+09 B0329+54 B1604-00 B0355+54 B1612+07 B0450+55 B1642-03 B0525+21 B1706-16 B0531+21* B1749-28 B0628-28 B1822-09 B0655+64 B1839+56 B1842+14 B0809+74 B0818-13 B1919+21 B0823+26 B1929+10 B2020+28 B0834+06 B2110+27 B0919+06 B0943+10 J2145-0750 B0950+08 B2217+47 B1112+50 J2324-05

- >100 Pulsars detected (>94 through pulsations, 6 through single pulses)
- 6 MSPs detected
- Periods from 1.9ms to 4s

Frequency Evolution

DM Monitoring

Rotating Radio Transients (RRATs)

Single pulse results for 'drx_56863_J2324-05'

Outline

- Fourier Transforms
- Antenna fundamentals
- Types of antennas
- Antenna performance parameters

Fourier Transforms

Fourier suggested that any function (continuous or discrete) could be represented as a series of sines and cosines or equivalently with complex exponentials

G. Taylor, Astr 423 at UNM

Example: Atmospheric CO₂ (after removing anthropogenic trend)

cumulative power

The University of New Mexico

Example Fourier Transforms

Fourier Transform Rules

for any function F(x) Its FT is $f(o) = \int_{-\infty}^{\infty} F(x) e^{-2\pi i x \sigma} dx$ a 'pair" $F(x) = \int_{-\infty}^{\infty} f(\sigma) e^{-2\pi i X \sigma} d\sigma$ Theorems F(x)+ (0-) Similarity f (ab) to F (X) addition $f(\sigma)+g(\sigma) = F(x)+G(x)$ shift f(o-a) eizeax F(x) Modulation f(0) (050 { F(x-\varphi) + { F(s+\varphi) Convoluzion f(o) & g(o) F(x) G(x) F(x)auto correl f(o) & f"(o)

Fourier Transforms

Hi, Dr. Elizabeth? Yeah, Uh... I accidentally took the Fourier transform of my cat... Meow!

RADIO TELESCOPE BLOCK DIAGRAM

G. Taylor, Astr 423 at UNM

NEAD

16

E.g., pre-upgrade VLA observing at 4.8 GHz (C band)

Antenna

Front End

IF

Back End

Correlator

Interferometer Block Diagram

G. Taylor, Astr 423 at UNM

The University of New Mexico

Importance of the Antenna Elements

- Antenna amplitude pattern causes amplitude to vary across the source.
- Antenna phase pattern causes phase to vary across the source.

- Polarization properties of the antenna modify the apparent polarization of the source.
- Antenna pointing errors can cause time varying amplitude and phase errors.
- Variation in noise pickup from the ground can cause time variable amplitude errors.
- Deformations of the antenna surface can cause amplitude and phase errors, especially at short wavelengths.

18

General Antenna Types

Wavelength = 1 m (approx) Hybrid antennas (wire reflectors or feeds)

G. Taylor, Astr 423 at UNM

19

Basic Antenna Formulas

Effective collecting area $A(v, \theta, \phi) m^2$

On-axis response $A_e = \eta A$ η = aperture efficiency

Normalized pattern (primary beam) $A(v,\theta,\phi) = A(v,\theta,\phi)/A_e$

Beam solid angle $\Omega_A = \iint A(v,\theta,\phi) d\Omega$ all sky

 $A_e \Omega_A = \lambda^2$

Aperture-Beam Fourier Transform Relationship

f(u,v) = complex aperture field distribution u,v = aperture coordinates (wavelengths)

F(I,m) = complex far-field voltage patternI = sin $\theta cos\phi$, m = sin $\theta sin\phi$

 $\begin{aligned} \mathsf{F}(\mathsf{I},\mathsf{m}) &= \iint_{\mathsf{aperture}} \mathsf{f}(\mathsf{u},\mathsf{v}) \mathsf{exp}(2\pi \mathsf{i}(\mathsf{u}\mathsf{I}+\mathsf{vm})\mathsf{d}\mathsf{u}\mathsf{d}\mathsf{v} \\ \mathsf{f}(\mathsf{u},\mathsf{v}) &= \iint_{\mathsf{hemisphere}} \mathsf{F}(\mathsf{I},\mathsf{m}) \mathsf{exp}(-2\pi \mathsf{i}(\mathsf{u}\mathsf{I}+\mathsf{vm})\mathsf{d}\mathsf{I}\mathsf{d}\mathsf{m} \end{aligned}$

For VLA: θ_{3dB} = 1.02/D, First null = 1.22/D, D = reflector diameter in wavelengths

The Standard Parabolic Antenna Response

The University of New Mexico

Antenna Holography

VLA 4.8 GHz

Far field pattern amplitude Phase not shown

Aperture field distribution amplitude. Phase not shown

Primary Antenna Key Features

G. Taylor, Astr 423 at UNM

Types of Antenna Mount

- + Better tracking accuracy
- Higher cost
- Poorer gravity performance
- Non-intersecting axis

- + Lower cost
- + Better gravity performance
- Beam rotates on the sky

Beam Rotation on the Sky

Reflector Types

RX

Prime focus (GMRT)

Offset Cassegrain Naysmith (VLA)

Beam Waveguide (NRO) (ATA)

(OVRO)

Dual Offset

G. Taylor, Astr 423 at UNM

Reflector Types

Prime focus (GMRT)

Offset Cassegrain (VLA)

Cassegrain focus (AT)

Naysmith (OVRO)

Beam Waveguide (NRO)

Dual Offset (ATA)

G. Taylor, Astr 423 at UNM

Effelsberg 100-m telescope near Bonn, Germany

Reflector Types

Dual Offset

Unblocked Aperture (GBT)

VLA and EVLA Feed System Design

Example Feed Horn

Focal Plane Arrays

8 x 9 Array for 2-7 GHz

Ivashina Et al.

Antenna Performance Parameters

Aperture Efficiency $A_0 = \eta A, \eta = \eta_{sf} * \eta_{bl} * \eta_s * \eta_t * \eta_{misc}$ $\eta_{sf} = reflector surface efficiency$ $\eta_{bl} = blockage efficiency$ $\eta_s = feed spillover efficiency$ $\eta_t = feed illumination efficiency$ $\eta_{misc} = diffraction, phase, match, loss$

 $\begin{aligned} \eta_{sf} &= \exp(-(4\pi\sigma/\lambda)^2) \\ \text{e.g., } \sigma &= \lambda/16 \text{ , } \eta_{sf} = 0.5 \end{aligned}$

Antenna Performance Parameters

Pointing Accuracy $\Delta \theta$ = rms pointing error

Often $\Delta \theta < \theta_{3dB} / 10$ acceptable Because $A(\theta_{3dB} / 10) \sim 0.97$ BUT, at half power point in beam $A(\theta_{3dB} / 2 \pm \theta_{3dB} / 10) / A(\theta_{3dB} / 2) = \pm 0.3$

For best VLA pointing use Reference Pointing. $\Delta \theta = 3 \text{ arcsec} = \theta_{3dB} / 17 @ 50 \text{ GHz}$

Antenna Pointing Design

Az encoder

G. Taylor, Astr 423 at UNM

ALMA 12m Antenna

Surface: $\sigma = 25 \ \mu m$ Pointing: $\Delta \theta = 0.6$ arcsec

Carbon fiber and invar reflector structure

Antenna Performance Parameters

Polarization

Antenna can modify the apparent polarization properties of the source:

- Symmetry of the optics
- Quality of feed polarization splitter
- Circularity of feed radiation patterns,
- Reflections in the optics
- Curvature of the reflectors

38

E

Off-Axis Cross Polarization

Cross polarized aperture distribution

VLA 4.8 GHz cross polarized primary beam

Cross polarized primary beam

Other Concerns

- Pointing errors, especially at high frequencies
- Gain curves
- Atmospheric opacity corrections
- Ionospheric effects: scintillation, isoplanatic patch size

Practical concerns continued

Opacity corrections and tipping scans

 Can measure the total power detected as a function of elevation, which has contributions

$$T_{sys} = T_0 + T_{atm}(1 - e^{\tau_0 a}) + T_{spill}(a)$$

and solve for τ_0 .

- Or, make use of the fact that there is a good correlation between the surface weather and τ_0 measured at the VLA (Butler 2002):

and apply this opacity correction using FILLM in AIPS

G. Taylor, Astr 423 at UNM

Further Reading

http://www.nrao.edu/whatisra/mechanisms.shtml http://www.nrao.edu/whatisra/

www.nrao.edu

Synthesis Imaging in Radio Astronomy ASP Vol 180, eds Taylor, Carilli & Perley

