

Radio Astronomy Received Power and other basics

Greg Taylor
University of New Mexico

Astronomy 423 at UNM Radio Astronomy

Announcements

• Observing proposals for VLA and LWA time due on Monday, Feb 1 by 4pm – send by e-mail to gbtaylor@unm.edu. Select projects in class Feb 3.

Radio Astronomy Notes

azimuth

azimuth

altitude

d_ = sine dedp

W= Power received in Watts

dw = Ir coso Lado do

flux = 5 dw = energy integrated notustry over the source of source of bandwith 5 = flux density = energy = $<math>5 \cdot cm^2 \cdot Hz =$ $3 \cdot Cm^2 \cdot Hz =$ W= Sondodo define 1 Ty = 10 eg 5 (cm 2 Hz) small because radio sources are far away Grometry review S= ra & in radians "small angle formula" asty = YT stradiques

Radio Astronomy Notes 3

Example: Consider a source with a varyon brightness:

of 10,000 Jy and a bandwidth of 16Hz over
the whole sky, How much power would a

100 on anyoned collect?

Wr = 5^A SN do = SN. 7 (son)²

= 10⁴ Jy. 7800 m². 10⁴ cn². 10⁻²³

= 7.8 × 10 W/Hz

 $W = \int w_{\nu} d\nu = 10^{9} Hz \cdot 7.8 \times 10^{-19} w$ $= 7.8 \times 10^{-10} w \text{ not much!}$

GBT pour consumption ~ 10° W

efficiency ~ 10⁻¹⁵ CC break even

Worksheet #1

Download the worksheet from:

http://www.phys.unm.edu/~gbtaylor/astr423/WS1.pdf

Solve it in class.

Ask questions if you are stuck

Tell me when you have the answer.

Radio Astronomy Notes Radiative Transfer 4 In = Intensity - does not change with distance unless absorbed or entitled dto = equition of fransfer coss: $dIv = -K_V I_V ds$ emissivity

garu: $dI_V = E_V ds$ dIn = En - KuIn 1 Emission only Xv=0 Consider some basic cases $\frac{dI_{v}}{ds} = E_{v} I_{v}(s) = I_{v}(s) + \int_{s}^{s} E_{v}(s) ds$ $I_{\nu}(s) = I_{\nu}(s_0) e^{-\frac{s_0}{s_0} + \frac{s_0}{s_0} + \frac{s_0}{s_0}} = 0$ Absorption only Ev=0 dIn = - Ku In Iv(5) = Iv(50) e-c Satu = - Skuds Ci optical depth [~ I~ = - \(\text{Kv ds} \)

(2) cont.

Radio Astronomy Notes 5

In (5)= In (50) e Consider différent optical depths:

I~ (5) = I~ (50) (no ab 50 rpx ton) C=0

"optically thin" - you can see through ix 2 <1 " optically thick" (=1 intensity x = ~0.37 771

2 = 2 horishy a 1 2 0, cy

7=4.6 I~ 0,01 (-20 dB) (3) Thermotyaanic Equilibrium 5 may nivules

Iv = Br (T) Planck function

0= Ends - Ku Inds

 $I_{\nu} = \underbrace{\mathcal{E}_{2}}_{\chi_{\nu}} = B_{\nu} (T)$

Thermal emission

By (7) = $\frac{2hv^3}{c^2}$ = $\frac{hv/kT}{-1}$ $\frac{h!}{h!}$ Planck's const $\frac{-1}{K}$

T: Temperature in A h! Planck's comst K

6.63 X 10 eng. 5

Kirchoff's Laws Illustrated –

Note: two ways to show a spectrum:

- 1)as an image
- 2) as a plot of intensity vs wavelength (or frequency)
- 3)Example:

Astronomical and other examples:

- Continuous: Incandescent lights, the Cosmic Microwave Background (CMB)
- Emission (bright) line: neon lights, hot interstellar gas -- HII regions, supernova remnants.
- Absorption (dark) line: stars (relatively cool atmospheres overlying hot interiors).

For a gas of a given element, absorption and emission lines occur at same wavelengths.

Temperature

- We have talked about "hot", "cold" to understand what produces these spectra, we need understanding of temperature
- A measurement of the internal energy content of an object.
- Solids: Higher temperature means higher average vibrational energy per atom or molecule.
- Gases: Higher temperature means higher average kinetic energy (faster speeds) per atom or molecule.

How does temperature relate to random motion? For an ideal gas, if particles have mass m and typical speed, v, then

$$v = \sqrt{\frac{3kT}{m}}$$

k is Boltzmann's constant, and has value 1.38 x 10⁻²³ m² kg s⁻² K⁻¹, (or Joules K⁻¹). We'll derive this in a later lecture.

Blackbody Radiation

- A blackbody is an object that absorbs all radiation, at all wavelengths: perfect absorber. No incident light is reflected
- As it absorbs radiation, it will heat up and radiate
- A blackbody will emit radiation at a broad range of wavelengths (continuous spectrum)

The spectrum of radiation the blackbody emits is entirely due to its temperature.

Intensity, or brightness, as a function of frequency (or wavelength) is given by Planck's Law:

$$I_{\nu} = \frac{2h\nu^{3}}{c^{2}} \left[\frac{1}{e^{h\nu/kT} - 1} \right] \quad \text{also} \quad I_{\lambda} = \frac{2hc^{2}}{\lambda^{5}} \left[\frac{1}{e^{hc/\lambda kT} - 1} \right]$$

where k is Boltzmann constant = $1.38 \times 10^{-23} \text{ J/K}$ and h is Planck's constant = $6.6 \times 10^{-34} \text{ J s}$

Units of intensity: J s⁻¹ m⁻² ster ⁻¹ Hz⁻¹

Example: 4 blackbody (Planck curves) for 4 different temperatures.

Wien's Law for a blackbody

- $\overline{\bullet \ \lambda_{\text{max}}} = 0.0029 \text{ (m K)} / \text{T}$
- λ_{max} is the wavelength of maximum emission of the object (in meters), and
- T is the temperature of the object (in Kelvins).

=> The hotter the blackbody, the shorter the wavelength of maximum emission

Hotter objects are bluer, cooler objects are redder.

Example 1: How hot is the Sun?

Measure λ_{max} to be about 500 nm, so $T_{sun} = 0.0029 \text{ m K} / \lambda_{max} = 0.0029 \text{ m K} / 5.0 \text{ x } 10^{-7} \text{ m}$ = 5800 K

Example 2: At what wavelength would the spectrum peak for a star which is 5800/2 = 2900 K?

For a star with T= 5800 x 2 = 11,600 K? What colors would these stars be? Wavelengths of peaks of the curve illustrate Wien's Law.

The spectrum of the Sun is *almost* a blackbody curve.

Betelgeuse surface temp 3500 K

Rigel surface temp 11,000 K

Stefan-Boltzmann Law for a blackbody

- $F = \sigma T^4$
- F is the <u>emergent flux</u>, in joules per square meter of surface per second (J m⁻² s⁻¹, or W m⁻²)
- σ is a constant = 5.67 x 10⁻⁸ W m⁻² K⁻⁴
- T is the object's temperature, in K

The hotter the blackbody, the more radiation it gives off at all wavelengths

At any wavelength, a hotter body radiates more intensely

<u>Example:</u> If the temperature of the Sun were twice what it is now, how much more energy would the Sun produce every second?

Luminosity and Blackbody Radiation

<u>Luminosity</u> is radiation energy emitted per second from <u>entire</u> surface:

 $\overline{L = F_{\text{emergent}} \times (\text{surface area})}$

Units of L are Watts (W, or J/s)

For sphere (stars),

 $L = 4\pi R^2 \times F_{emergent}$

For spherical blackbody (stars, approx.): $L = 4\pi R^2 \sigma T^4$

Spectrum of the Sun – what kind of spectrum is this?

