

Searching for Pulsars
with PRESTO

By Scott Ransom
NRAO / UVa

Getting PRESTO

● Homepage:
http://www.cv.nrao.edu/~sransom/presto/

● PRESTO is freely available from github
https://github.com/scottransom/presto

● You are highly encouraged to fork your own
copy, study / modify the code, and make bug-
fixes, improvements, etc....

http://www.cv.nrao.edu/~sransom/presto/
https://github.com/scottransom/presto

For this tutorial...

● You will need a fully working version of PRESTO (including
the python extensions)

● If you have questions about a command, just try it out!
Typing the command name alone usually gives usage info.

● You need at least 1GB of free disk space
● Linux users: if you have more than that amount of RAM, I

encourage you to do everything in a subdirectory under
/dev/shm

● Commands will be > typewriter script

● The sample dataset that I'll use is here (25MB)
http://www.cv.nrao.edu/~sransom/GBT_Lband_PSR.bcpm2

http://www.cv.nrao.edu/~sransom/GBT_Lband_PSR.bcpm2

Outline of a PRESTO Search
1) Examine data format (readfile)

2) Search for RFI (rfifind)

3) Make a topocentric, DM=0 time series (prepdata and exploredat)

4) FFT the time series (realfft)

5) Identify “birdies” to zap in searches (explorefft and accelsearch)

6) Make zaplist (makezaplist.py)

7) Make De-dispersion plan (DDplan.py)

8) De-disperse (prepsubband)

9) Search the data for periodic signals (accelsearch)

10) Search the data for single pulses (single_pulse_search.py)

11) Sift through the candidates (ACCEL_sift.py)

12) Fold the best candidates (prepfold)

13) Start timing the new pulsar (prepfold and get_TOAs.py)

Examine the raw data
> readfile GBT_Lband_PSR.bcpm2

● readfile can
automatically identify
most of the datatypes
that PRESTO can
handle

● It prints the meta-data
about the observation

Search for prominent RFI: 1
> rfifind -time 2.0 -o Lband GBT_Lband_PSR.bcpm2

● rfifind identifies strong
narrow-band and/or short
duration broadband RFI

● Creates a “mask” (basename
determined by “-o”) where RFI is
replaced by median values

● All PRESTO programs
automatically clip strong,
transient, DM=0 signals (turn off
using -noclip)

● Typical integration times (-time)
should be a few seconds

● Modify the resulting mask using
“-nocompute -mask ...” and
the other rfifind options

Search for prominent RFI: 2
● Check the number of bad

intervals. Usually should be
less than ~20%

● Most significant and most
numbers birdies are listed (to
see all, use -rfixwin)

● Makes a bunch of output files
including “...rfifind.ps” where
colors are bad (red is periodic
RFI, blue/green are time-
domain statistical issues)

● Re-run with “-time 1” or re-
compute with “-nocompute”
in this case

Search for prominent RFI: 3

This is not good.... too much color!
That means we are masking too much data....

Search for prominent RFI: 4

This is after using “-time 1” and it looks better.

Look for persistent low-level RFI
> prepdata -nobary -o Lband_topo_DM0.00 \
 -dm 0.0 -mask Lband_rfifind.mask \
 -numout 530000 GBT_Lband_PSR.bcpm2

● prepdata de-disperses a single time-series. The “-nobary” flag
tells PRESTO not to barycenter the time series.

● If you need to de-disperse multiple time-series, use prepsubband

● Since we will search these data (and FFT them), make sure that the
resulting time-series has a “good” number of points (-numout)

Explore and FFT the time-series
> exploredat Lband_topo_DM0.00.dat
> realfft Lband_topo_DM0.00.dat
> explorefft Lband_topo_DM0.00.fft

● exploredat and
explorefft allow you
to fully interactively
view a time-series or its
power spectrum

● These commands are
very useful for checking
for data problems

● realfft requires that
the time-series is easily
factorable (and at least
has 1 factor of '2'). Use
the “factor” program
to check.

Find the periodic interference
> accelsearch -numharm 4 -zmax 0 \
 Lband_topo_DM0.00.dat

● We “trick” accelsearch into find all of the main peaks (7 in this case)

● Will parse the output files to make our “birds” file

● “.inf” file is ASCII and is therefore human readable. Also in the ACCEL file.

Make a “birds” file
● Use explorefft and the *ACCEL_0 files to identify the main periodic

signals. Since these are DM=0, they are almost certainly RFI.

● Edit the .birds file with a text editor

● Need to use these same columns

● “Freq” and “Width” in Hz and the number of harmonics to zap

● If the zapping regions should get bigger with harmonic, set “grow?” to 1

● If the frequency is barycentric (i.e. a known pulsar), set “bary?” to 1

Convert the “birds” file to a zaplist
● Make an associated “.inf” file for the “.birds” file

 > cp Lband_rfifind.inf Lband.inf

● Now convert all of the “birds” and harmonics into individual freqs/widths

 > makezaplist.py Lband.birds

● The resulting “Lband.zaplist” is ASCII and can be edited by hand

● It can also be loaded into explorefft so you can see if you are zapping
everything you need (see the explorefft help screen)

● Apply the zaplist using “zapbirds”:

 > zapbirds -zap -zapfile Lband.zaplist \
 Lband_topo_DM0.00.fft

● Zapping barycentric time-series requires “-baryv” to convert topocentric
RFI freqs to barycentric. Get that by running prepdata or prepfold on
raw data (you can ctrl-c to stop them).

Determining a De-Dispersion Plan
> DDplan.py -d 500.0 -n 96 -b 96 -t 0.000072 \
-f 1400.0 -s 32 -r 0.5

● DDplan.py determines near-optimal ways to de-disperse your data
to maintain sensitivity to fast pulsars yet save CPU and I/O time

● Assumes using prepsubband to do multiple-passes through the
data using “subband” de-dispersion

● Specify command line information from readfile

“-r” reduces the effective time
 resolution to speed up search

Determining a De-Dispersion Plan

Subband De-Dispersion 1
● Incoherent de-dispersion

requires you to shift the arrival
times of each input channel for
a particular DM

● This can be made much
quicker by partially shifting
groups of channels (subbands)
to some nominal DM

● The resulting subband dataset
can then be de-dispersed
around neighboring DMs with
many fewer calculations

● In PRESTO, we do this
subband de-dispersion with
prepsubband and
mpiprepsubband

From Magro and Zarb Adami, MNRAS in press

Subband De-Dispersion 2
> prepsubband -nsub 32 -lodm 0.0 -dmstep 2.0 -numdms
24 -numout 132500 -downsamp 4 -mask
Lband_rfifind.mask -o Lband GBT_Lband_PSR.bcpm2

● That command line comes from the first call of the first de-dispersion
plan line:

● You need to call prepsubband as many times as there are “calls” in
the de-dispersion plan

● If you have a parallel computer (and very long observations), you
can use the fully parallel program mpiprepsubband to have one
machine read the data, broadcast it to many other CPUs and then
each CPU effectively makes a “call”

● The dedisp.py script in $PRESTO/python can help you automate
this process (and generates subbands as well, which can be used to
fold candidates and see the DM-curve much faster than by folding
raw data). When the file has been edited, do: python dedisp.py

Prepare for Searching the Data

> mkdir subbands
> mv *.sub* subbands/
> rm -f Lband*topo*

● First we'll clean up this directory but putting the subband files in their
own directory and getting rid of the temporary topocentric files

● Use xargs (awesome Unix command) to fft and zap the *.dat files

● Remember that we can get the barycentric value by running a fake
prepdata or prepfold command on the raw data. The value we
use is “The average topocentric valocity”

● Now we are ready to run accelsearch on the *.fft files

● Note that if you are using short time series (like we are), you can use
accelsearch to do its own FFTing and zapping. See the -zaplist
and -baryv options for accelsearch.

> ls *.dat | xargs -n 1 realfft
> ls *.fft | xargs -n 1 zapbirds -zap \
-zapfile Lband.zaplist -baryv -5.69726e-05

Searching for Periodic Signals
> accelsearch -harmpolish -zmax 0 Lband_DM0.00.dat

● Accelsearch conducts Fourier-domain acceleration (or not, if
zmax=0) searches for periodic signals using Fourier interpolation and
harmonic summing of 1, 2, 4, 8 and/or 16.

● “zmax” is the max number of Fourier bins the highest harmonic for a
particular search (i.e. fundamental or 1st harm. for a 1 harm. search, 8th
harm. for a 8 harm. search) can linearly drift in the power spectrum (i.e.
due to orbital motion). Sub-harmonics drift proportionally less (i.e. if 2nd
harm. drifts 10 bins, the fundamental will drift 5).

● The time that the searches take doubles for each additional level of
harmonic summing, and is linearly proportional to zmax.

● For MSPs, 8 harmonics is almost always enough. And zmax < 300 or
so (beyond that non-linear acceleration start to creep in).

● -harmpolish will eventually become the default (it is better)

● You can use xargs: ls *.dat | xargs -n 1 accelsearch ...

Sifting the periodic candidates
> python ACCEL_sift.py > cands.txt

● ACCEL_sift.py is in $PRESTO/python and can be edited and
tweaked on an observation specific basis

● It uses several heuristics to reject bad candidates that are unlikely to
be pulsars. And it combines multiple detections of the same
candidate signals over various DMs (and harmonics as well)

● The resulting output is human readable and is a ranked list of the
best candidates

● ASCII “plots” in the cands.txt file allow you to see rough signal-to-
noise versus DM (if there is a peak at DM != 0, that is good)

● The format for the “candidate” is the candfile:candnum (as you would
use them with prepfold....

● You can also look through the ACCEL files themselves. The ones
ending in numbers are human readable (use less -S). Summaries
of the candidates are at top and details of their harmonics at bottom.

Folding Pulsar Candidates
> prepfold -accelcand 2 -accelfile \
Lband_DM62.00_ACCEL_0.cand Lband_DM62.00.dat

● prepfold can fold time-series (*.dat files), subbands (*.sub?? files),
or rawdata files. Many ways to specify period (-p) / freq (-f) etc.

● Folding time-series is very fast and is useful to decide which
candidates to fold the raw data

● When you fold subbands and/or the raw data, make sure that you
specify the DM (and choose the set of subbands with closest DM).

● For modern raw data, using 64 or more subbands (-nsub) is a good
idea for folding (to see narrow band RFI and scintillation better)

● If RFI is bad, can zap it using show_pfd or re-fold using -mask

> prepfold -dm 62.0 -accelcand 2 -accelfile \
Lband_DM62.00_ACCEL_0.cand \
subbands/Lband_DM72.00.sub??

> prepfold -n 64 -nsub 96 -p 0.004621638 -dm 62.0 \
GBT_Lband_PSR.bcpm2

Pulsar! (timeseries)
> prepfold -accelcand 2 -accelfile \
Lband_DM62.00_ACCEL_0.cand Lband_DM62.00.dat

Pulsar! (raw data)
> prepfold -n 64 -nsub 96 -p 0.004621638 -dm 62.0 \
GBT_Lband_PSR.bcpm2

Searching for Transient Bursts
> single_pulse_search.py *.dat

● single_pulse_search.py conducts matched-filtering single-
pulse searches using “boxcar” templates.

● -fast can make things about a factor of 2 faster, but only use it if
the data are well-behaved (relatively constant power levels)

● Generates *.singlepulse files that are ASCII and a single-pulse plot

● Can regenerate a plot using (for instance)

 > single_pulse_search.py *DM1??.??*.singlepulse

● Can choose start and end times as well (--start and --end)

Searching for Transient Bursts

Making TOAs from the discovery obs

● get_TOAs.py needs to be run on a prepfold file of either a
topocentric time series or a fold of raw data. The fold must have
been made either using a parfile (use -timing) or with the (-
nosearch) option.

● The must be either a single gaussian (-g FWHM), an ASCII profile
(i.e. a bestprof file from prepfold) or a multi-gaussian-template
(derived using pygaussfit.py: “-g template.gaussian”)

● -n is the number of TOAs (and must factor the number of parts (-
npart) from the prepfold file

● -s is the number of subband TOAs to generate (1 is default)

 > get_TOAs.py -g 0.1 -n 20 newpulsar.pfd

Now try it from scratch...

● There is another sample data set (with mystery pulsar) here:

● Command history for this tutorial can be found here:

● Let me know if you have any problems or suggestions!

Scott Ransom <sransom@nrao.edu>

http://www.cv.nrao.edu/~sransom/Parkes_70cm_PSR.fits

http://www.cv.nrao.edu/~sransom/GBT_Lband_PSR_cmd_history.txt

http://www.cv.nrao.edu/~sransom/Parkes_70cm_PSR.fits
http://www.cv.nrao.edu/~sransom/GBT_Lband_PSR_cmd_history.txt

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

