The massive star is closer to center of mass, and moves more slowly than the planet, but it does move!

Worksheet \#5: Sun and Jupiter orbit their common center of mass every 11.86 years.
Note M_J / M_Sun = 1/1047
What is the orbital speed of the Sun?
What is the astrometric displacement for a similar system at a distance of 10 pc ?

Solution: First calculate the semi-major axis of the Jupiter's orbit $\mathrm{P}^{2}=\mathrm{a}^{3}$ so $\mathrm{a}=5.2 \mathrm{AU}=780 \times 10^{9} \mathrm{~m}$
$M_{s} r_{s}=M_{j} r_{j}$ so $r_{s}=740 \times 10^{6} \mathrm{~m}$
Angular size $=2 \times 740 \times 10^{6} \mathrm{~m} / 10 \times 3.09 \times 10^{16} \mathrm{~m}$
$=4.8 \times 10^{-9}$ radians $\times 206265000 \mathrm{mas} / \mathrm{rad}$
$=0.99 \mathrm{mas}$

Calculate orbital speed of Sun assuming Jupiter is only planet:
Moves in circular orbit of radius $742,000 \mathrm{~km}$

How much Doppler shift? Consider H-alpha absorption line, at rest wavelength 656 nm :

$$
V=\frac{2 \pi r}{P}=\frac{2 \pi(742,000 \mathrm{~km})}{11.86 \text { years }}=12.5 \mathrm{~m} / \mathrm{s}
$$

$\Delta \lambda=\frac{V}{c} \lambda_{0}=\frac{12.5 \mathrm{~m} / \mathrm{s}}{3 \times 10^{8} \mathrm{~m} / \mathrm{s}} 656 \mathrm{~nm}=2.7 \times 10^{-5} \mathrm{~nm}$

51 Pegasi

Michel Mayor \& Didier Queloz at Geneva Observatory observed wobble in 1995
Sun-like star 15 pc distance

Wobble was $53 \mathrm{~m} / \mathrm{s}$, period 4.15 days

Implied a planet with 0.5
Jupiter mass orbiting at 0.05 AU!
First planet found around sunlike star

Michel Mayor \& Didier Queloz Nobel Prize 2019

Selection effects

Doppler wobble biased towards massive planets close to their star (leads to larger velocities and shorter periods). Now getting close to Earth-mass planets.

Limited by the orbital speed sensitivity (few m/s but always improving) and length of orbital period: for more than several year periods, hard to tell if motion is periodic

Inclination of binary orbit unknown (unless transits observed). More likely to be close to edge-on for detection. If not, wobble is larger than measured and so is planet.

Characteristics of detections

Some hot Jupiters on small orbits (migration or formation?)

Some with very elliptical orbits (in the Solar System this is a sign of perturbation $=>$ supports migration idea?)

Rare around low-mass stars (smaller disks thus less material)

Rare around metal-poor stars

count: 4472 planets! What about these "hot Jupiters"?

Planetary Mass (Mjup)

TRAPPIST-1 System

Kepler-186 f
 Earth

HABITABLE ZONES OF PLANETARY SYSTEMS
Planets to scale with one another but not to orbital distances.

Detecting Radio Bursts from Exoplanets

Suitability of the LWA1
Observations to date
Near future: Owens Valley
Farther future: the LWA swarm

Emission from Jupiter

Also, sort the following table out on your own from the physics and geometry involved in each type of event:

Type of binary	Observations performed (or needed)	Parameters determined
Visual	a) Apparent magnitudes and π b) P, a, and π c) Motion relative to CM	Stellar luminosities Semi-major axis (a) Mass sum (M+m)
Spectroscopic	a) Single velocity curve b) Double velocity curve	Mass function $\mathrm{f}(M, m)$ Mass ratio (M/m)
Eclipsing	a) Shape of light curve eclipses b) Relative times between eclipses c) Light loss at eclipse minima	Orbital inclination (i) Relative stellar radii ($\left.R_{l, s} / a\right)$ Orbital eccentricity (e) Surface temperature ratio $\left(T / T_{s}\right)$
Eclipsing/spectroscopic	a) Light and velocity curves b) Spectroscopic parallax + apparent magnitude	Absolute dimensions (a, r_{s}, r_{l}) e and i Distance to binary Stellar luminosities Surface temperatures (T_{l}, T_{s})

Astronomy 421

Lecture 8: Stellar Spectra

Key concepts:

Stellar Spectra

The Maxwell-Boltzmann Distribution

The Boltzmann Equation

The Saha Equation

UVBRI system

Filter name	Effective wavelength (nm)	0-magnitude flux (Jy)
U	360	1880
B	440	4400
V	550	3880
R	700	3010
I	880	2430

Color index useful since it defines a star's temperature

Stellar Spectra

Stellar spectral types

Spectral type	Temperature of Atmosphere	Examples
O	$30,000-50,000$	
B	$10,000-30,000$	Rigel
A	$8,000-10,000$	Vega, Sirius
F	$6,000-8,000$	
G	$5200-6000$	Sun
K	$4000-5200$	
M	$2000-4000$	Betelgeuse
L	$1300-2000$	
T	<1300	

Further subdivision: e.g., B0-B9, G0-G9 etc. The Sun is a G2.

Why is spectrum so sensitive to temperature (apart from blackbody)?

Schematic of stellar atmosphere

Atmosphere: atoms, ions, electrons

Surface

Maxwell-Boltzmann velocity distribution

Consider gas in a star with some density, temperature, chemical composition (may change with R).

Several different atomic processes occur:

- Collisional excitation
- Collisional de-excitation
- Radiative excitation
- Radiative de-excitation
- Collisional ionization
- Radiative ionization
- Recombination

Thermal Equilibrium: T of any parcel of gas equals that of surroundings. Not quite true in stars, but T varies slowly enough with R that it's a good approximation.

In TE, the number density of particles with speed between v and $v+d v$:

$$
n_{V} d v=n\left(\frac{m}{2 \pi k T}\right)^{3 / 2} e^{-m v^{2} / 2 k T} 4 \pi v^{2} d v
$$

This is the Maxwell-Boltzmann velocity distribution function. $k T$ is the characteristic thermal energy of a gas at temperature T .

Most particles have KE~kT, due to collisions. This process is called thermalization.

This is a result from "statistical mechanics".

Most probable speed $\quad v_{m p}=\sqrt{\frac{2 k T}{m}}$

Root mean-square speed $\quad v_{r m s}=\sqrt{\frac{3 k T}{m}}$

Note: the speed depends on mass. At a given T, more massive particles slower on average, but each species has same average KE.

Point: Atoms of a gas gain and lose energy via collisions.
In typical stellar atmospheres, radiative transitions dominate.

Maxwell-Boltzmann Velocity Distribution for

 N_{2}

What dictates spectral line strengths?

We'll see spectral lines are extremely useful - relative strengths give information on temperature (most clearly), density, and composition of stellar atmospheres.

Consider the case of thermal equilibrium (TE) => average number of atoms in a given energy (i.e. electron energies) state remains unchanged, e.g. each excitation balanced by a de-excitation ("steadystate").

The relative number of atoms or ions in each state is governed by the Boltzmann Equation:

$$
\frac{N_{b}}{N_{a}}=\frac{g_{b} e^{-E_{b} / k T}}{g_{a} e^{-E_{a} / k T}}=\frac{g_{b}}{g_{a}} e^{-\left(E_{b}-E_{a}\right) / k T}
$$

$$
\frac{N_{b}}{N_{a}}=\frac{g_{b} e^{-E_{b} / k T}}{g_{a} e^{-E_{a} / k T}}=\frac{g_{b}}{g_{a}} e^{-\left(E_{b}-E_{a}\right) / k T}
$$

$N_{b}=$ \#atoms per unit volume in state b
$N_{a}=$ \#atoms per unit volume in state a
$E_{b}=$ energy of level b
$E_{a}=$ energy of level a
$k=$ Boltzmann's constant $=1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}=8.6 \times 10^{-5} \mathrm{eV} \mathrm{K}^{-1}$
$T=$ gas temperature
$g_{i}=$ multiplicity of level i
= how many e^{-}you can put in level i before Pauli exclusion principle is violated
= "statistical weight" or "degeneracy" of energy level i (number of quantum states (different I, m_{l}, m_{s}) with same energy)

Statistical weight for H atom
$n=1, l=0, m_{l}=0, m_{s}=+/-1 / 2 \Rightarrow g=2$
$n=2, l=0,1, \quad m_{l}=0,+/-1, \quad m_{s}=+/-1 / 2 \Rightarrow \quad g=8$

Can show $g_{n}=2 n^{2}$ for H .

Boltzmann Equation qualitatively:

$$
\frac{N_{b}}{N_{a}}=\frac{g_{b}}{g_{a}} e^{-\left(E_{b}-E_{a}\right) / k T}
$$

Physical reasoning:

- $\frac{N_{b}}{N_{a}} \uparrow$ as $T \uparrow \quad$ more collisional, radiative excitations at higher T
- $\frac{N_{b}}{N_{a}} \rightarrow \frac{g_{b}}{g_{a}}$ as $T \rightarrow \infty \quad$ exponential decline becomes unimportant
- $\frac{N_{b}}{N_{a}}$ small if $E_{b}-E_{a} \gg k T$

Few excitations to level b if typical thermal energy too low.

Example

What is N_{2} / N_{1} for hydrogen for the Sun? $T \sim 5780 \mathrm{~K}$.

$$
\begin{aligned}
E_{n} & =-\frac{13.6 e V}{n^{2}} \\
\frac{N_{2}}{N_{1}} & =\frac{g_{2}}{g_{1}} e^{-\left(E_{2}-E_{1}\right) / k T} \\
& =\frac{2(2)^{2}}{2(1)^{2}} e^{-\left[\left(-13.6 \mathrm{eV} / 2^{2}\right)-\left(-13.6 \mathrm{eV} / 1^{2}\right)\right] / k T}=4 e^{-10.2 \mathrm{eV} / k T} \simeq 4 \times 10^{-9}
\end{aligned}
$$

Balmer lines are not very intense in the Solar spectrum.

For stars T~10,000 K, $\frac{N_{2}}{N_{1}} \sim 3 \times 10^{-5}$
So stronger Balmer lines in Type A stars.
In fact, to reach $N_{b} / N_{a}=1$, we need $T=85,000 \mathrm{~K}$.

Observationally though, Balmer lines reach maximum intensity at $\mathrm{T}=9250 \mathrm{~K}$, and fall in intensity at higher temperatures. Why?

Ionization!

As T increases, there is more energy (both radiative and collisional) available to ionize the atoms.

In equilibrium, the ionization rate = recombination rate for every type of ion.

$$
X \leftrightarrow X^{+}+e^{-}
$$

The ratio of the number of atoms in ionization stage (i+1) to the number in stage i :

$$
\frac{N_{i+1}}{N_{i}}=\frac{2 Z_{i+1}}{n_{e} Z_{i}}\left(\frac{2 \pi m_{e} k T}{h^{2}}\right)^{3 / 2} e^{-\chi_{i} / k T}
$$

The Saha Equation

Where
$\chi_{\mathrm{i}}=$ ionization energy needed to remove e^{-}from atom in ground state of state i to $i+1$
$n_{e}=$ free electron number density
$Z=$ partition function, weighted sum of ways the atom or ion can distribute its electrons among its energy levels

$$
Z=\sum_{j=1}^{\infty} g_{j} e^{-\left(E_{j}-E_{1}\right) / k T}
$$

weighted such that higher E is a less likely configuration.
Accounts for fact that not all atoms or ions will be in ground state. Z must be calculated for each ionization state of the element.

For an ideal gas, can also express Saha Eqn in terms of pressure, using $P_{e}=n_{e} k T$

$$
\frac{N_{i+1}}{N_{i}}=\frac{2 k T Z_{i+1}}{P_{e} Z_{i}}\left(\frac{2 \pi m_{e} k T}{h^{2}}\right)^{3 / 2} e^{-\chi_{i} / k T}
$$

Example: consider a pure Hydrogen atmosphere at constant pressure:

$$
P_{e}=20 \mathrm{Nm}^{-2}
$$

We want to calculate the ionized fraction as a function of T, from 5000 K up to $25,000 \mathrm{~K}$.

Then we need the partition functions Z_{l} (neutral) and $Z_{/ /}$(ionized).
$Z_{\text {II }}=1 \quad$ - only one state available, just a proton.
Z_{l} : at these $T \mathrm{~s}, E_{2}-E_{1}=10.2 \mathrm{eV} \gg k T$. (check!). Thus, as before, most neutral H is in ground state, and only $\mathrm{j}=1$ contributes significantly to Z_{i} :

$$
Z_{I} \simeq g_{1}=2(1)^{2}=2
$$

Plug this into the Saha Equation giving $N_{I I} / N_{I}$ and then compute the fraction of ionized hydrogen which must be $N_{I I} / N_{t o t}$

$$
\frac{N_{I I}}{N_{t o t}}=\frac{N_{I I}}{N_{I}+N_{I I}}=\frac{N_{I I} / N_{I}}{1+N_{I I} / N_{I}}
$$

So, ionization happens in a very narrow range of T. Almost completely ionized (95\%) by $T=11,000 \mathrm{~K}$.

Combine Boltzmann and Saha Equations to understand the Balmer lines:
Population of higher levels with higher T (Boltzmann) quenched by ionization (Saha)

Therefore, at some T, the population of e^{-}in higher levels will reach a maximum.
For our hydrogen example, at $\mathrm{T}<25,000 \mathrm{~K}$, almost all neutral atoms in $n=1$ or 2 , so $N_{I} \approx N_{1}+N_{2}$ and population of $n=2$ level is:

$$
\frac{N_{2}}{N_{t o t}}=\frac{N_{2}}{N_{2}+N_{1}} \frac{N_{I}}{N_{t o t}}=\frac{N_{2} / N_{1}}{1+N_{2} / N_{1}} \frac{1}{N_{t o t} / N_{I}}
$$

since $N_{t o t}=N_{I}+N_{I I}$

$$
\frac{N_{2}}{N_{t o t}}=\frac{N_{2} / N_{1}}{1+N_{2} / N_{1}} \frac{1}{\left(1+N_{I I} / N_{I}\right)}
$$

Plot this

$n=2$ maximized at $T \sim 10,000 \mathrm{~K}$ (A stars) => Balmer absorption lines $\left(n_{\text {lower }}=2\right)$ strongest.

Why are lines of other elements often at least as strong as \mathbf{H} ?

For example, Ca in the Sun has $\frac{N_{C a}}{N_{H}}=2 \times 10^{-6} \quad$!
But $\mathrm{CaII}=>$ Ca II requires only 6.11 eV . So \sim all Ca is Ca II.

Ca II "H" and "K" lines at $\sim 400 \mathrm{~nm}$ require only 3.12 eV photons. Absorption is from ground state.

Balmer lines require electrons to be in $n=2,10.2 \mathrm{eV}$ above $n=1$.

Because of exponentials in Boltzmann and Saha equations, there are many more Ca II's in ground state than H's in $n=2$.

> (see example 8.1.5 for numbers)

Temperature (K)

Hertzsprung Russell Diagram

More commonly made from observations: a color-magnitude diagram:

(globular cluster M13)

(Morgan-Keenan) Luminosity Classes

Atmospheric pressure affects width of absorption lines:
Lower pressure => decreased line width
Higher pressure => increased line width

The atmospheric pressure is lower in the photosphere of an extremely large red giant than in a main sequence star of similar temperature => giant's spectral lines are narrower

Sun G2V Betelgeuse M2la

Cartoon of a Hertzsprung-Russell Diagram with Luminosity Classes

With spectral type and luminosity class, distance to star can be estimated: "spectroscopic parallax".

