Twin Paradox

Suppose there are two twins, Al and Bill age 10. Al goes to summer camp 25 light-years away. If he travels at 0.9999 c then it takes 25 years each way and Bill is age 60 when Al gets back. But Al is only 10 and a half because time for him was moving slower. But from Al's point-ofview Bill was the one moving so how did Bill get so old?

Astronomy 421

Lecture 8: Binary stars

N

Four Corners Meeting

How to Register for the Meeting

1) Download and fill out "Purchasing Goods and Services" form from

http://physics.unm.edu/pandaweb/mainoffice/forms/Interna1.pdf

See example next page
2) Go to the web site for the meeting and click on "Four Corners Section Meeting Registration Form"
3) Login with your APS account, or create a free one
4) Fill in the registration form until you get to the credit card request
5) Take your Purchasing form and your laptop computer down to Chris Moroney in PAIS 1211 and get him to put in the info for his UNM Pcard to pay for the conference.
6) Done!

P\&A Internal Order Form for Goods \& Services

Date: 9/14/2022
*Version: May 2021
Name: Ima Student
Email: istudent@unm.edu
Phone: (505)123-1234
Check one: Equipment \square Consumable \square
Replacement Part:
 No \square
UNM Tag / Assembly No. \qquad
Location (Required)

Shipping Preference:	\square FedEx	\square Overnight
	\square UPS	\square 2nd Day
	\square Pick-Up	\square Ground

Vendor: APS

Phone/Fax:
Prices confirmed with/quote \#
Website/E-mail

Additional Requirements for Purchase Type

Non-dell computer: Attach UNM non-standard computer form
Computer parts: Include model, serial, and UNM tag number for computer parts will be used for
Purchase requiring login to personal account(such as conference registration): Include username/password, or indicate time to meet in person to make purchase
(s) is back-ordered: (check one)

Order item anyway and notify me afterwards Notify me first before purchasing item(s).

Qty	Part \#	Description	Item cost	Total
1		Registration for APS 4 Corners Meeting	50.00	$\$ 50.00$
				$\$ 0.00$
				$\$ 0.00$
			$\$ 0.00$	
			$\$ 0.00$	
			$\$ 0.00$	
			$\$ 0.00$	
			$\$ 0.00$	
			$\$ 0.00$	
			$\$ 0.00$	
				$\$$
				$\$ 0.00$
Sub Total				
Shipping Costs				

Index	Acct. Code	Amount

Total w/shipping
-If splitting indexes, indicate index to use for additional shipping charges

Pcard orders:

(Federal grants: always attach 3 quotes) Services $<\$ 5,000$ Services $>\$ 5,000$ (SPQ required) Goods < \$10,000 (attach a quote)
Goods \$10,000-\$20,000 (attach a quote)
Goods \$20,000-\$60,000 (attach 3 quotes)
Goods $>\$ 60,000$ (must be competitively solicited for 30 days, include Sole Source if applicable)
(for office use only)

- Odrive
_ Index
Scan
Email Ntfetn
Invoice Revd
— Odrive Updated
— Index Updated
Packing Slip Rev
Reallocated -
Reconciled

Authorized Signature \qquad
Description of items: Registration fee
Business Purpose*: Attend APS 4 Corners meeting

Key concepts:

Binary types

How to use binaries to determine stellar parameters

The mass-luminosity relation

Binary stars

So far, we've looked at the basic physics we need for understanding stars:

Newton's laws and binary orbits

BB radiation: luminosity, effective temperature, radius

Spectra: composition, radial velocity (and much more to come!)

Now we start to apply these to learn about stars. The most fundamental property that dictates a star's structure and evolution is its mass.

The direct way to measure mass is by observing binary systems (will also give info on radii, temperature, luminosity, density).

Types of binary stars

About half of the stars are in binary or multiple systems. We divide them into groups from an observational standpoint.

- Visual binaries: nearby binaries where both stars can be imaged and motions across sky measured. Masses of each star can be found.
- Astrometric binaries: Only one star visible (other too dim). Infer existence of unseen companion causing oscillatory motion of the visible star.

Types of binary stars cont.

- Eclipsing binaries: orbital plane has orientation relative to our LOS that the stars periodically eclipse each other - studies of light curves yields much information.
- Spectrum binaries: can't distinguish two stars on the sky, but spectrum is two superimposed spectra with different Doppler shifts, but period too long to measure.
- Spectroscopic binaries: period is sufficiently short to cause observable periodic shift of spectral lines (if $v_{r} \neq 0$). Very useful when they also eclipse.
- double-lined binaries (spectral lines from both stars visible)
- single-lined binaries (spectral line from only one star visible)

Optical doubles: a chance line-of-sight (LOS) alignment. Not gravitationally bound, no physical connection so not useful.

Visual binaries

Wobble of Sirius A and B. Straight line describes motion of CM through space.

Which one is more massive?
Terminology: \quad brighter $=$ primary fainter $=$ secondary

We observe:

- Angular separation of each star from CM as a function of time
- Period

To get masses, we also need to know

- Distance
- Inclination (i)

Mass determination from visual binaries

Assume we have two stars with masses m_{1} and m_{2}, that orbit around the center of mass with semi-major axes a_{1} and a_{2}. Definition of the center of mass gives

$$
\frac{m_{1}}{m_{2}}=\frac{r_{2}}{r_{1}}=\frac{a_{2}}{a_{1}}
$$

and Kepler's third law gives

$$
P^{2}=\frac{4 \pi^{2}}{G\left(m_{1}+m_{2}\right)} a^{3}
$$

where $a=a_{1}+a_{2}=$ semi-major axis of orbit of reduced mass. So we have two equations which can give us both masses. But we need to measure P, a_{1} and a_{2}.

In practice, the binary is located at a distance d and its orbital plane will form an angle i with the plane of the sky. Assume as a special case that the orbit is tilted around the minor axis.

Then we observe the semi-major axes as angle projected onto the sky:

$$
\alpha_{1}=a_{1} \frac{\cos i}{d}
$$

$$
\alpha_{2}=a_{2} \frac{\cos i}{d}
$$

Then we write the mass ratio using these observable quantities as

$$
\frac{m_{1}}{m_{2}}=\frac{a_{2}}{a_{1}}=\frac{\alpha_{2} d \cos i}{\alpha_{1} d \cos i}=\frac{\alpha_{2}}{\alpha_{1}}
$$

(convince yourself that this is true regardless of axis around which orbit is tilted).
To find $m_{1}+m_{2}$, we need to measure P and determine $a\left(=a_{1}+a_{2}\right)$. If d and i are known, then we know a_{1} and a_{2}, and thus a.

Now we can solve for m_{1} / m_{2} and $m_{1}+m_{2}=>m_{1}, m_{2}$.

The orbital plane will generally not be in the plane of the sky: the apparent orbit will still be an ellipse (of different eccentricity and focus location).

How can we find i ?

The CM is found by defining a straight line in space for which the ratio of the angular distances of each star to it is the same at all times. But if orbit inclined, this will not be at apparent focus of ellipse. Must find ellipse that, when projected onto sky, has focus at CM. Harder if ellipse not tilted around minor axis, as in figure.

How can we find d ?
Possibly Earth-orbit parallax (e.g.with Hipparcos satellite), or other methods we'll see later.

What about astrometric binaries?

Assume distance is known and orbit in plane of sky again. Can only measure P, a_{1} (star oscillates around a point that exhibits straight line, unaccelerated motion).

Then use

$$
\begin{aligned}
& \mathrm{e} \quad a_{2}=\frac{m_{1}}{m_{2}} a_{1} \\
& P^{2}=\frac{4 \pi^{2}}{G\left(m_{1}+m_{2}\right)}\left(a_{1}+a_{2}\right)^{3}
\end{aligned}
$$

To find

$$
P^{2}=\frac{4 \pi^{2} a_{1}^{3}}{G m_{2}^{3}}\left(m_{1}+m_{2}\right)^{2}
$$

If m_{1} known some other way, can get m_{2}. Applications?

Spectroscopic binaries

Measure the Doppler shift of spectral lines to get the radial velocity.

Consider case where both sets of lines are visible (doesn't have to be true!) and circular orbits.

Then radial velocity curves will be sinusoidal.

(a)

(b)

A Spectroscopic Binary System
High-mass star A and lower-mass B orbit around a common centre of mass. The observed combined spectrum shows periodic splitting and shifting of spectral lines. The amount of shift is a function of the alignment of the system relative to us and the orbital speed of the stars.

Changing i just changes amplitude, not the shape.

Note: when orbits are not circular, the velocity curves will be skewed:

(a)

(b)

Fortunately, spectroscopic binaries tend to be close (why?) and their orbits circularize over relatively short timescales.

For circular orbits at some inclination $i, \quad v_{1 r}^{m a x}=v_{1} \sin i$

$$
v_{2 r}^{\max }=v_{2} \sin i
$$

For circular orbits: $\quad v_{1} P=2 \pi a_{1}, \quad v_{2} P=2 \pi a_{2}$

$$
\text { since } \frac{m_{1}}{m_{2}}=\frac{a_{2}}{a_{1}} \Rightarrow \frac{m_{1}}{m_{2}}=\frac{v_{2}}{v_{1}}
$$

Or, using the observed radial velocities:

$$
\frac{m_{1}}{m_{2}}=\frac{v_{2 r}^{\max }}{v_{1 r}^{\max }}
$$

inclination drops out again!

To get the sum of the masses, use:

$$
a_{1}=\frac{v_{1} P}{2 \pi}, \quad a_{2}=\frac{v_{2} P}{2 \pi}, \quad a=a_{1}+a_{2}
$$

Kepler's third law then becomes: $\quad m_{1}+m_{2}=\frac{P}{2 \pi G}\left(v_{1}+v_{2}\right)^{3}$

Or, in terms of observed velocity:

$$
m_{1}+m_{2}=\frac{P}{2 \pi G} \frac{\left(v_{1 r}^{\max }+v_{2 r}^{\max }\right)^{3}}{\sin ^{3} i}
$$

Problem: we cannot measure i as before with visual binaries. Must make statistical arguments.

Is an i close to 0 degrees likely?
Would you be happier if this were an eclipsing spectroscopic binary?

Another problem:
sometimes only one set of lines is visible. If only star 1 is observable:

$$
\frac{m_{1}}{m_{2}}=\frac{v_{2 r}^{\max }}{v_{1 r}^{\max }} \quad \Rightarrow \frac{m_{2}^{3}}{\left(m_{1}+m_{2}\right)^{2}} \sin ^{3} i=\underbrace{\frac{P}{2 \pi G}\left(v_{1 r}^{\max }\right)^{3}}
$$

The 'mass function'

The RHS is called the mass function and contains observable parameters (also looks familiar from our eqn for astrometric binaries)

This sets a lower limit on m_{2} (e.g. still useful for investigating neutron star and black hole binaries).

Eclipsing binaries:

Can't resolve the stars, but the shape of the "light curve" gives information on the inclination and the radii of the stars.

Can compare depths of minima to find ratio of temperatures, since $F_{e} \propto T^{4}$ and same cross-sectional areas are obscured during eclipses.

Assume the smaller star is hotter. Then the incident fluxes at key times are:

$$
\begin{array}{cc}
d \rightarrow e & F_{o} \propto r_{l}^{2} T_{l}^{4}+r_{s}^{2} T_{s}^{4} \\
b \rightarrow c & F_{\text {prim }} \propto r_{l}^{2} T_{l}^{4} \quad \text { "primary", or deeper minimum } \\
f \rightarrow g \quad & F_{s e c} \propto\left(r_{l}^{2}-r_{s}^{2}\right) T_{l}^{4}+r_{s}^{2} T_{s}^{4} \quad \text { "secondary" minimum } \\
& \Rightarrow\left(\frac{T_{s}}{T_{l}}\right)^{4}=\frac{F_{0}-F_{p r i m}}{F_{0}-F_{s e c}}
\end{array}
$$

Note: if we assume the larger star is hotter, it can be shown
that the same equation holds, but with the LHS becoming $\left(\frac{T_{l}}{T_{s}}\right)^{4}$.

Thus, we can get T ratios, but can't tell which one is hotter.

Finally, if eclipsing and double lined spectroscopic binary and orbits are circular, then we can get the stellar radii. We know $v \sin i \approx v$. Then

$$
\begin{aligned}
& r_{s}=\frac{v}{2}\left(t_{b}-t_{a}\right) \\
& r_{l}=\frac{v}{2}\left(t_{c}-t_{a}\right)
\end{aligned}
$$

Where $v=v_{s}+v_{l}$
which we determined from spectra

Application of mass determinations:

Study of binary stars is the source of the calibrated mass-luminosity relation.

Will look at physics of stars to understand where the relation comes from, and why there is a break in the slope.

$$
\begin{aligned}
\left(\frac{L}{L_{\odot}}\right) & =\left(\frac{M}{M_{\odot}}\right)^{4} \\
\left(\frac{L}{L_{\odot}}\right) & =\left(\frac{M}{M_{\odot}}\right)^{2}
\end{aligned}
$$

Exoplanets

Planetary transits or eclipses. Light curves give radii, orbit size, as before. But need spectrum of star to form mass function and constrain planet mass (later we'll see how star's spectrum can also give its mass).

Planets around other stars

Test solar system formation process
Possibility of life on other planets

Techniques:
Direct detection (images)
Transit of star by planet
Microlensing
Detection of star' s wobble by spectroscopy
Detection of star's wobble by imaging
Detection of radio bursts

Direct Imaging

(a) When the planet transits (moves in front of) the star, it blocks out part of the star's visible light

- The amount of dimming tells us the planet's diameter

(b) When the planet transits the star, some light from the star passes through the planet's atmosphere on its way to us
- The additional absorption features in the star's spectrum reveal the composition of the planet's atmosphere

(c) When the planet moves behind the star, the infrared glow from the planet's surface is blocked from our view - The amount of infrared dimming tells us the planet's surface temperature

Dims by about 1-2\% during the transit
Requires precision photometry, better done from space Can extract info on planet's atmosphere, size, temp!

Kepler transit mission - 3000+ candidates, confirmed list smaller.

Kepler

NASA's First Mission Capable of
Finding Earth-size \& Smaller Planets

also CoRoT

Gravitational microlensing

If two stars line up, one near and one far, the light from the background star will bend around the foreground star (due to gravity)
A planet around the foreground star will cause an intense amplification if passing close to the line of sight
only 15 planets found this way

(a) No microlensing

(b) Microlensing by star

(c) Microlensing by star and planet

Detecting a star's wobble

Idea: a planet and its star both orbit around their common center of mass, staying on opposite sides of this point. Creates a "wobble".

A wobbling star might be seen by careful observations, called "astrometry":

Most successful method: Use the Doppler shift of star's spectral lines due to its radial (= back and forth) motion:

c

The massive star is closer to center of mass, and moves more slowly than the planet, but it does move!

Worksheet \#5: Sun and Jupiter orbit their common center of mass every 11.86 years.
Note M_J / M_Sun = 1/1047
What is the orbital speed of the Sun?
What is the astrometric displacement for a similar system at a distance of 10 pc ?

Solution: First calculate the semi-major axis of the Jupiter's orbit $\mathrm{P}^{2}=\mathrm{a}^{3}$ so $\mathrm{a}=5.2 \mathrm{AU}=780 \times 10^{9} \mathrm{~m}$
$M_{s} r_{s}=M_{j} r_{j}$ so $r_{s}=740 \times 10^{6} \mathrm{~m}$
Angular size $=2 \times 740 \times 10^{6} \mathrm{~m} / 10 \times 3.09 \times 10^{16} \mathrm{~m}$
$=4.8 \times 10^{-9}$ radians $\times 206265000 \mathrm{mas} / \mathrm{rad}$
$=0.99 \mathrm{mas}$

Calculate orbital speed of Sun assuming Jupiter is only planet:
Moves in circular orbit of radius $742,000 \mathrm{~km}$

How much Doppler shift? Consider H-alpha absorption line, at rest wavelength 656 nm :

$$
V=\frac{2 \pi r}{P}=\frac{2 \pi(742,000 \mathrm{~km})}{11.86 \text { years }}=12.5 \mathrm{~m} / \mathrm{s}
$$

$\Delta \lambda=\frac{V}{c} \lambda_{0}=\frac{12.5 \mathrm{~m} / \mathrm{s}}{3 \times 10^{8} \mathrm{~m} / \mathrm{s}} 656 \mathrm{~nm}=2.7 \times 10^{-5} \mathrm{~nm}$

51 Pegasi

Michel Mayor \& Didier Queloz at Geneva Observatory observed wobble in 1995
Sun-like star 15 pc distance

Wobble was $53 \mathrm{~m} / \mathrm{s}$, period 4.15 days

Implied a planet with 0.5
Jupiter mass orbiting at 0.05 AU!
First planet found around sunlike star

Michel Mayor \& Didier Queloz Nobel Prize 2019

Selection effects

Doppler wobble biased towards massive planets close to their star (leads to larger velocities and shorter periods). Now getting close to Earth-mass planets.

Limited by the orbital speed sensitivity (few m/s but always improving) and length of orbital period: for more than several year periods, hard to tell if motion is periodic

Inclination of binary orbit unknown (unless transits observed). More likely to be close to edge-on for detection. If not, wobble is larger than measured and so is planet.

Characteristics of detections

Some hot Jupiters on small orbits (migration or formation?)

Some with very elliptical orbits (in the Solar System this is a sign of perturbation $=>$ supports migration idea?)

Rare around low-mass stars (smaller disks thus less material)

Rare around metal-poor stars

count: 4472 planets! What about these "hot Jupiters"?

Planetary Mass (Mjup)

TRAPPIST-1 System

Kepler-186 f
 Earth

HABITABLE ZONES OF PLANETARY SYSTEMS
Planets to scale with one another but not to orbital distances.

Detecting Radio Bursts from Exoplanets

Suitability of the LWA1
Observations to date
Near future: Owens Valley
Farther future: the LWA swarm

Emission from Jupiter

Also, sort the following table out on your own from the physics and geometry involved in each type of event:

Type of binary	Observations performed (or needed)	Parameters determined
Visual	a) Apparent magnitudes and π b) P, a, and π c) Motion relative to CM	Stellar luminosities Semi-major axis (a) Mass sum (M+m)
Spectroscopic	a) Single velocity curve b) Double velocity curve	Mass function $\mathrm{f}(M, m)$ Mass ratio (M/m)
Eclipsing	a) Shape of light curve eclipses b) Relative times between eclipses c) Light loss at eclipse minima	Orbital inclination (i) Relative stellar radii ($R_{l, s} / a$) Orbital eccentricity (e) Surface temperature ratio $\left(T_{1} / T_{s}\right)$
Eclipsing/spectroscopic	a) Light and velocity curves b) Spectroscopic parallax + apparent magnitude	Absolute dimensions (a, r_{s}, r_{l}) e and i Distance to binary Stellar luminosities Surface temperatures (T_{l}, T_{s})

