Astronomy 421

Lecture 7 - Key Concepts:

Relativistic beaming

Superluminal Motion

Relativistic Doppler shift

Relativistic dynamics

Spacetime diagram and the Lorentz transformations

Changing from one reference frame to another via the Lorentz transformations will:
a) Affect the time coordinate (time dilation)
b) Affect the space coordinates (length contraction)

This is leading to a distortion of the spacetime diagram.

Spacetime

Two side-by-side observers agree on all space and time measurements

Share same spacetime

Two observers in relative motion disagree on space and time measurements But always same ratio!

Differences imperceptible at low speeds
Important at speeds near c (relativistic speeds)

Observers in relative motion experience space and time differently, but speed of light is always constant!

Time Dilation Animated

Time between 'ticks' = distance / speed of light

Light in the moving clock covers more distance...
...but the speed of light is constant...
...so the clock ticks slower!

Past, future and elsewhere

Causality

Events A and B :

- A can communicate information to B by sending a signal at (or less than) the speed of light
- The temporal order of A and B cannot be changed by changing the reference frames
- A and B are causally connected

Events A and C :

- Any communication between A and C must happen at a speed faster than the speed of light
- The temporal order of A and C can be changed by changing the reference frame.
- A and C are causally disconnected

Relativistic Mass

There is an increase in the effective mass of an object moving at relativistic speeds given by:
$m=\gamma m_{0} \quad$ where

$$
\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

you have to reach 0.14 c to change the mass by 1% at 0.99 c the mass is 7.14 times greater than rest mass

Lorentz Transformations

|

Light from the top of the bar has further to travel.
It therefore takes longer to reach the eye.
So, the bar appears bent.
Weird!

Velocity transformations

Recall Lorentz coordinate and velocity transformations:

$$
\begin{array}{ll}
x=\gamma\left(x^{\prime}+u t^{\prime}\right) & x^{\prime}=\gamma(x-u t) \\
y=y^{\prime} & y^{\prime}=y \\
z=z^{\prime} & z^{\prime}=z \\
t=\gamma\left(t^{\prime}+\frac{u x^{\prime}}{c^{2}}\right) & t^{\prime}=\gamma\left(t-\frac{u x}{c^{2}}\right)
\end{array}
$$

$$
\begin{aligned}
v_{x}^{\prime} & =\frac{v_{x}-u}{1-u v_{x} / c^{2}} \\
v_{y}^{\prime} & =\frac{v_{y} \sqrt{1-u^{2} / c^{2}}}{1-u v_{x} / c^{2}} \\
v_{z}^{\prime} & =\frac{v_{z} \sqrt{1-u^{2} / c^{2}}}{1-u v_{x} / c^{2}}
\end{aligned}
$$

To get inverse transforms, just replace u with $-u$.

Relativistic Velocity Addition

Ship moves away from a cat at $0.5 c$ and fires a rocket with velocity (relative to ship) of 0.5 c

How fast (compared to the speed of light) does the rocket move relative to the cat?

Relativistic Velocity Addition

Classically: $\boldsymbol{V}=\mathbf{v}_{\mathbf{1}}+\mathbf{v}_{\mathbf{2}}$
Relativistically:

$$
V_{=}=\frac{\boldsymbol{V}_{1}+\boldsymbol{V}_{2}}{1+\frac{\boldsymbol{V}_{1} \boldsymbol{V}_{2}}{\boldsymbol{c}^{2}}}
$$

Ship moves away from cat at 0.8 c (as measured in the rest-frame of the cat)

Relativistic Velocity Addition

Classically: $\boldsymbol{V}=\boldsymbol{v}_{\mathbf{1}}+\boldsymbol{v}_{\mathbf{2}}$
Relativistically:

$$
\boldsymbol{V}=\frac{\boldsymbol{v}_{1}+\boldsymbol{v}_{2}}{1+\frac{\boldsymbol{v}_{1} \boldsymbol{v}_{2}}{c^{2}}}
$$

Ship moves away from you at $0.5 c$ and fires a rocket with velocity (relative to ship) of 0.5c
You see rocket move at 0.8c
No massize object can be accelerated to the speed of light!
If instead the ship fires a laser at speed c, what speed do you measure for the light?

Relativistic beaming or the 'headlight effect'.
If a light source emits isotropically in its rest frame (S^{\prime}), then radiation is beamed along the direction of motion in a frame S where the source moves at large speed.

Light source in frame S^{\prime} moving with speed u along x. Consider a ray emitted along the y-axis in S^{\prime}. Then $v_{x}{ }^{\prime}=v_{z}^{\prime}=0, v_{y}^{\prime}=c$

In the S frame:

$$
\begin{aligned}
& v_{x}=\frac{v_{x}^{\prime}+u}{1+u v_{x}^{\prime} / c^{2}}=u \quad(\neq 0) \\
& v_{y}=\frac{v_{y}^{\prime} \sqrt{1-u^{2} / c^{2}}}{1+u v_{x}^{\prime} / c^{2}}=c \sqrt{1-u^{2} / c^{2}} \\
& v_{z}=\frac{v_{z}^{\prime} \sqrt{1-u^{2} / c^{2}}}{1+u v_{x}^{\prime} / c^{2}}=0
\end{aligned}
$$

$$
\underbrace{\stackrel{\rightharpoonup}{\mathrm{y}}}_{v_{x}} \stackrel{\rightharpoonup}{v_{y}} \underset{\theta}{\mathrm{x}} \sin \theta=\frac{v_{y}}{v}
$$

In frame S:

$$
v_{x}>0, v_{y}>0, \quad \text { so } \theta<90^{\circ} \quad \text { i.e. } v \text { not along the } \mathrm{y} \text { axis }
$$

$$
\sin \theta=\frac{c \sqrt{1-u^{2} / c^{2}}}{c}=\frac{1}{\gamma}
$$

transforms to

Example: Neutron star emission. The radiation is said to be beamed, or relativistically boosted.

Superluminal motion

Pearson et al. 1981

$$
\begin{aligned}
& \text { constant expansion observed at } \\
& \text { rate }=\Delta \theta / \text { year }=0.76 \pm 0.04 \text { mas/year } \\
& \begin{aligned}
\mathrm{z}=0.158 \text { so } \mathrm{D} & =940 \mathrm{Mpc}
\end{aligned} \\
& \begin{aligned}
\text { assuming } \mathrm{H}_{0} & =50 \mathrm{~km} \mathrm{sec}
\end{aligned} \\
& \begin{aligned}
& \mathrm{d} \text { mas }=10^{-3} \mathrm{Mpc} \\
& \text { arcsec }=4.85 \times 10^{-9} \text { radians } \\
& \text { velocity, or rate }=\mathrm{d} / \text { year } \\
&=10 \text { lt-years/year } \\
&=10 \mathrm{c}
\end{aligned}
\end{aligned}
$$

Superluminal Motion
 Observed in Quasar Radio Jets like 3C-273

Suppose that at $t=0$, the blob is at the quasar and at $t=t^{\prime}$ the blob is along the jet a distance r

Radiation sent at Blob

$$
\begin{aligned}
& t=0 \\
& t=t^{\prime}
\end{aligned}
$$

Received at Earth

$$
\begin{gathered}
D / C \\
(D-x) / c+t^{\prime}
\end{gathered}
$$

SO

$$
\begin{aligned}
& \Delta t=t^{\prime}-x / c \\
& \Delta t=t^{\prime}(1-v / c \cos \phi)
\end{aligned}
$$

Apparent transverse velocity $=\frac{d}{\Delta t}=\frac{v \sin \phi}{1-v / c \cos \phi}$
For $v / c \sim 1$, and small $\phi, \sin \phi \approx \phi$, and $1-\cos \phi \approx 1 / 2 \phi^{2}$ so

$$
\begin{aligned}
\frac{\mathrm{d}}{\Delta t} & \approx \frac{c \dot{ }}{1 / 2 \phi^{2}} \\
& \approx \frac{2 c}{\phi} \gg c \quad[!!]
\end{aligned}
$$

$\frac{v \sin \phi}{1-v / c \cos \phi}$

G. Taylor, Astr 423 at UNM

Relativistic doppler shift

Classical (low velocity) doppler shift, e.g., sound source moving through a medium:

$$
V_{\text {los }}=\frac{\lambda_{\text {obs }}-\lambda_{\text {rest }}}{\lambda_{\text {rest }}} c=\frac{\Delta \lambda}{\lambda_{\text {rest }}} c
$$

Due to relative motion of source and observer

Relativistic case: must take time dilation into account! Also, let's consider observer at any angle to direction of motion.

Light source emitting signals every $\Delta t_{\text {rest }}$ as measured by clock at rest wrt source. For stationary observer, this interval is $\gamma \Delta t_{\text {rest }}$. distance traveled is speed of source u times $\Delta t^{\prime}{ }_{\text {rest }}\left(>\Delta t_{\text {rest }}\right)$.

But second signal must also travel an extra distance, which is given by $u \cos \theta \gamma \Delta t_{\text {rest }}$. So extra time traveled is $u / c \cos \theta \gamma \Delta t_{\text {rest }}$

In observer's frame, this time interval is

$$
\Delta t^{\prime}=\frac{\Delta t_{\text {rest }}}{\sqrt{1-u^{2} / c^{2}}}
$$

But also, $2^{\text {nd }}$ signal travels extra distance (in observer's frame)

$$
\frac{u \Delta t_{\text {rest }} \cos \theta}{\sqrt{1-u^{2} / c^{2}}}
$$

So the time interval between emission of light signals in observer's frame:

$$
\Delta t_{o b s}=\frac{\Delta t_{\text {rest }}}{\sqrt{1-u^{2} / c^{2}}}\left[1+\frac{u}{c} \cos \theta\right]
$$

We are free to set $\Delta t_{\text {rest }}$ as the period of a wave in the source's frame. Then

$$
\begin{aligned}
\nu_{r e s t} & =\frac{1}{\Delta t_{r e s t}}, \quad \nu_{o b s}=\frac{1}{\Delta t_{o b s}} \\
\Rightarrow \nu_{o b s} & =\frac{\nu_{r e s t} \sqrt{1-u^{2} / c^{2}}}{1+(u / c) \cos \theta} \\
\nu_{o b s} & =\frac{\nu_{r e s t} \sqrt{1-u^{2} / c^{2}}}{1+v_{r} / c} \quad v_{r}=\text { radial velocity }=u \cos \theta
\end{aligned}
$$

For motion directly away ($v_{r}=u$) or toward ($v_{r}=-u$)

$$
\begin{gathered}
\Rightarrow \sqrt{1-u^{2} / c^{2}}=\sqrt{\left(1-v_{r} / c\right)\left(1+v_{r} / c\right)} \\
\nu_{o b s}=\nu_{r e s t} \sqrt{\frac{1-v_{r} / c}{1+v_{r} / c}}
\end{gathered}
$$

NB: There is also a transverse Doppler shift due to time dilation alone.
NB: This cannot be used for cosmological (due to expansion of universe) redshifts. That redshift is not due to motion through space.

Extragalactic astronomers commonly use:
The redshift parameter $\quad z \equiv \frac{\lambda_{\text {obs }}-\lambda_{\text {rest }}}{\lambda_{\text {rest }}}$

Since

$$
c=\lambda \nu
$$

$$
z=\sqrt{\frac{1+v_{r} / c}{1-v_{r} / c}}-1
$$

$$
\frac{v_{r}}{c}=\frac{(z+1)^{2}-1}{(z+1)^{2}+1}
$$

Also

$$
z+1=\frac{\Delta t_{o b s}}{\Delta t_{r e s t}}
$$

If we observe brightness of quasar to vary over $\Delta t_{o b s}$, is variation timescale shorter or longer in the rest frame of the quasar?

Also

$$
z+1=\frac{\Delta t_{\text {obs }}}{\Delta t_{\text {rest }}}
$$

If we observe brightness of quasar to vary over $\Delta t_{o b s}$, is variation timescale shorter or longer in the rest frame of the quasar?

Quasar size

Relativistic Dynamics

Momentum

If momentum is conserved in all inertial reference frames, we can't have $\vec{p}=m \vec{v}$. Instead, we need:

$$
\vec{p}=\gamma m \vec{v} \quad \begin{aligned}
& \text { Where } \vec{v} \text { is particle's velocity } \\
& \text { relative to observer. (Derived at end } \\
& \text { of } C+O \text { 4.4 but not responsible for it). }
\end{aligned}
$$

Energy

Kinetic energy

$$
K E=\int F d x=\int \frac{d p}{d t} d x
$$

With $\vec{p}=\gamma m \vec{v} \quad$, you can show (C\&O ch 4.4)

$$
K E=m c^{2}(\gamma-1) \quad\left(\text { reduces to } \frac{1}{2} m v^{2} \text { for } v \ll c\right)
$$

Note: $\quad \gamma m c^{2}$ depends on speed
$m c^{2}$ independent of speed
$m c^{2}$ called rest energy
$E=\gamma m c^{2} \quad$ is total relativistic energy $\left(K E=E-E_{\text {rest }}\right)$

With $E=\gamma m c^{2} \quad \vec{p}=\gamma m \vec{v}$
it can be shown (prob. 4.19) that:

$$
E^{2}=p^{2} c^{2}+m^{2} c^{4}
$$

What is E for photons?

Twin Paradox

Suppose there are two twins, Al and Bill age 10. Al goes to summer camp 25 light-years away. If he travels at 0.9999 c then it takes 25 years each way and Bill is age 60 when Al gets back. But Al is only 10 and a half because time for him was moving slower. But from Al's point-ofview Bill was the one moving so how did Bill get so old?

