
Example: Resolving power of a lens.

From the wave theory of light, the smallest angle a telescope can 
resolve is

where D is the diameter of the telescope, and λ is the wavelength of 
the EM radiation.

We can derive this as a direct consequence of the uncertainty 
principle.
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Pointing Accuracy
Dq = rms pointing error

Dq

q3dB

Primary beam A(q)

Antenna Beam Parameters
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Primary Beam

l=sin(q), D = antenna diameter in                                                                
wavelengths contours:-3,-6,-10,-15,-20,-25, -30,-35,-40 dB

dB = 10log(power ratio) = 20log(voltage ratio)
For VLA: q3dB = 1.02/D, First null = 1.22/D

pDl

Beam Pattern
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Lecture 5: Relativity
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Outline:

• Pre-Einstein History

• Einstein’s Postulates

• Simultaneity, Time Dilation and Length Contraction

• Lorentz Transformations

• Spacetime
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Galilean relativity

• Invariant: time, acceleration, force
• Relative: position, velocity

• Galilean transformation

10m/s

1m/s

11m/s
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Special relativity
A bit of history:

1860 - James Clerk Maxwell's theory of electromagnetism 
predicted EM waves with v=c. He proposed that light was 
EM wave.

Big question: what does the waving for light waves? All other 
known waves required a medium to support vibrations, e.g., water, 
air, string.

Luminiferous ether was proposed as the required medium.  EM 
waves move through ether with speed c.

Present everywhere (even in space), massless but rigid to support 
high frequencies, yet no effect on planets since their orbits could be 
understood by Newton's laws with no ether drag.
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The Michelson-Morley experiment (1887)
Idea was to detect Earth’s motion relative to the ether.  Presumably 
small because Earth’s motions are << c.

If velocity of Earth relative to ether is v, and velocity of light wave 
relative to ether is c, then velocity of a light wave traveling in the 
same direction as Earth is c-v relative to Earth (upwind), and in 
opposite direction, c+v.

One way to do it: 

c-v

c+v

v

Light pulse bouncing off 
mirror.

Entire system moving 
through ether at velocity 
v.  What is prediction for 
time for light to return to 
source, which gives v?

Light source

B

L
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Total time under this assumption is thus:

A very small effect.  How to measure it?
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If v =                            , 



Think of ether as river flowing to the left at speed v. For light (or a swimmer) to go from 
A to B, it goes "upstream" at velocity c-v. From B to A, it goes with current at c+v.

T1 (time for A-B-A):

How about light reflected at point C? A swimmer has to head a bit upstream if she 
wants to reach C since current will pull her downstream. Light travels at c, current at 
speed v, so net speed across river is sqrt(c2 – v2). Total time to cross river and back:

A B

C C'

L
ether
vspeed c

v

Different from T1 .  But still small, so how does this help?

L
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Michelson-Morley experiment (1887): 
Difference measurement employing interference of two light beams:

Observe fringe pattern of  
interfering light, rotate device 90 
degrees and count number of 
fringes that shift due to changing 
time difference between paths.

Null result: T’s are always the same whether parallel or perpendicular 
to Earth’s motion.  Earth has no motion with respect to ether. 
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The difference in path lengths would lead to interference fringe maxima 
at certain positions.  But hard to place elements accurately enough to 
measure true path lengths.  So instead rotate the apparatus 90 degrees 
and measure shift in position of fringes as the path lengths change.



Coordinate Transformations
How do coordinates transform in general?

A. Before relativity, “common sense” Galilean transformations were 
assumed to be always valid.

y

x

y'

x'

S frame S' frame

u S' moves at u along x-axis 
relative to S.

x'=x-ut
y'=y

z'=z

t'=t

x=x’+ut
y=y'

z=z'

t=t'
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Einstein’s postulates (1905):

It was known that Maxwell's equations changed form under a Galilean 
transformation. Should laws of physics be allowed to vary for different 
reference frames, or is Galilean transformation not the whole story?  
Einstein says we need a transformation of space and time that 
preserves laws of physics in all frames.

1. The principle of relativity
• the laws of physics are the same in all inertial reference frames.

2. The speed of light is constant
• light travels through a vacuum at constant speed c that is 

independent of the motion of the light source.  No ether needed, no
speed relative to it.

Consequences: compare measurements made by observers who are 
moving wrt each other.

S frame S' frame

y

xO

y'

x'O'

v
S' frame moves at velocity v
wrt S, in x (or x') direction.
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First Consequence: Loss of Simultaneity
Einstein's famous example - light flashing in railroad car. The bulb is in 
the middle of the car, observer S is stationary wrt tracks. Car moves to 
the right at velocity v.

S

S'

v

The bulb flashes: according to S', light hits ends of car at same moment, 
because traveling at constant c, equal distances. Events are simultaneous
in S' frame.
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Observer S says: both pulses travel at c relative to the tracks. During the 
travel time of the light, the train moves to the right. Pulse going to left 
hits back end of train before right-going pulse hits front. Events are not
simultaneous.

Who is right? 

Both. Just as there is no absolute motion, there is no absolute 
simultaneity. 

Simultaneity is relative, for events that occur at different spatial 
locations.

S

S'

v
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Second Consequence: Time Dilation
Consider the train again, with mirror on roof 
and vertical flashing. 

y'

x'O'

S' frame
x1'

D

y

x

S frame

x1 x2

v

D

vDt/2

cDt/2

Observer at rest in S' flashes light and measure time taken Dt' to hit roof 
and return. Dt'=2D/c.

What does this look like in S frame, where it takes a time Dt? Light 
path is longer in S. Solve for Dt from right triangle.

16



also

Observer in S frame claims clock in S’ runs slowly since observe in S’ 
claims a shorter time interval for the event. Observe in S’ says S clocks are 
fast.  If they agree on c, they give up time invariance.

The shorter time is measured in frame at rest relative to the events (here 
the beginning and end of the light’s trip).  This is “proper time”.

Lorentz factor
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How can we test this?
Effect is too small to see in daily life since v<<c normally.

• We can test by taking two atomic clocks, and have one on an airplane 
flying around Earth. 

– Moving clock is found somewhat behind the one at rest, thus 
moving clocks run slower.

• Muons (elementary particle) are created when cosmic rays hit the 
upper atmosphere. Its lifetime is so short that most should decay 
before it hits the surface of the Earth - but many are detected!

– Muons move with v~c and their lifetime is longer in our frame, 
which is not the proper frame since beginning and end of muon
life occurs in different places.  Worksheet #4
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y'

x'

A'
y'

x'

A'
y'

x'

v

x1 x2

A'
y'

x'

A'

Third Consequence: Length Contraction
Keep previous setup. Suppose x1 and x2 are the ends of a rod of length 
L=x2-x1, fixed in S. Observer in S sees that it takes a time Dt for train to 
pass by rod.  So L=vDt according to observer in S.
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v

S frame



The rod is smaller in a frame in which it is moving. The longest length 
called the proper length is measured in the rest frame of the rod.

In muon decay, muons see Earth’s atmosphere contracted, so less 
distance to go during lifetime.  So again, we see many at Earth’s surface.

In S', observer sees the rod moving past with speed v for time Dt', so 
length in S' is L'=v Dt'.

y'

x'
v

x1 x2

A'
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S’ frame



Back to Coordinate Transformations

A. Galilean transformations

y

x

y'

x'

S frame S' frame

u S' moves at u along x-axis 
relative to S.

x'=x-ut
y'=y

z'=z

t'=t

x=x’+ut
y=y'

z=z'

t=t'
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If something is at rest in S' frame at location x', what is it doing in the S 
frame?

It moves away at velocity u. After time t it will be at x=x'+ut in S frame.

Take d/dt of above

If light travels along x axis with speed c in S, this gives      
in S’, violating second postulate of Special Relativity.  Need 
transformation where speed is c in both frames.
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B. Lorentz transformations (derived in 4.2 of C+O):

Consistent with Einstein's postulates, e.g. can show Maxwell’s 
equations have same form in both frames.  Can derive time dilation 
and length contraction from these (see C+O).

Velocity transformations:
Write above as Δx, Δx’, or dx, dx’ etc. and form dx/dt (=vx) etc.:

(C+O Prob. 4.12) 23

𝑡 = 𝛾(𝑡! +
𝑢𝑥!

𝑐"
) 𝑡′ = 𝛾(𝑡 −

𝑢𝑥
𝑐"
)

𝑦! = 𝑦

𝑧! = 𝑧



So distance between two events, and time between two events, both 
depend on observer's frame of reference.  They are not invariant, unlike
in Galilean transformations.

Is there some quantity involving both time and distance that is invariant?

Yes! (C+O 17.2)
First, recall distance between two points in 3D:

which is the distance between coordinates (x1, y1, z1) and (x2, y2, z2)
with Dx=x2-x1, Dy=y2-y1and Dz=z2-z1. 
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Cartesian intervals

(length of a vector) is invariant under translation or rotation of the 
coordinate system (but is not invariant under a Lorentz transformation).
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const  v<c

Light emitted at x=y=t=0.

Worldline obeys

=> somewhere on cone surface

Spacetime Diagrams, Worldlines and Lightcones (see also C+O 17.2)

In relativity, must consider space and time together.  Use spacetime
diagrams and describe motion with worldlines

object at 
rest

const  v<c circular 
orbit

light cone
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Spacetime intervals

If we define the spacetime interval as below: 

Claim:          is invariant under Lorentz transformations.

Note: often
useful
To plot ct

27

Note: this line is not Δs!



If The     is invariant between frames of reference, then:

Confirm with Lorentz transformation with Dx=x, Dy=y, Dz=z, Dt=t,     
Dx'=x'' Dy'=y', Dz'=z', Dt'=t'.

Need to show
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= (Δ𝑠!)! = (𝑐Δ𝑡!)# − (Δ𝑥!)# − (Δ𝑦!)# − (Δ𝑧′)#

(Δ𝑠)! = (𝑐Δ𝑡)# − (Δ𝑥)# − (Δ𝑦)# − (Δ𝑧)#



QED

Interval , involving both space and time, is invariant. Spacetime.

Space is different for different observers. 

Time is different for different observers. 
Spacetime interval is the same for all observers.
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Time-like, space-like and light-like intervals

•
– spatial distance can be traveled with v<c

=> time-like interval

•
– spatial distance cannot be traveled with v<c

=> space-like interval

•
– for a signal moving at the speed of light, in any frame

=> light-like interval

Relevant later for black holes
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Definitions

• Inertial reference frame: a frame of reference in which the basic laws 
of physics apply (e.g. Newton's first law). 

– Example: a train moving at a constant velocity
– What is an example of a non-inertial frame?

• Inertial observer: an observer in an inertial rest frame

• Invariance: a quantity is invariant if all inertial observers would obtain 
the same result from measuring the quantity.

• Relativity: a quantity is relative if different inertial observers obtain 
different results from measuring the quantity.
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