Stars - spectral types

- 1901: Led by Annie Jump Cannon, Harvard astronomers looked at the spectra of >200,000 stars.
- Found that the spectra could be put into relatively few classes (OBAFGKM), based on the relative strengths of the absorption lines of different elements

Mnemonics

Oh Be A Fine Girl Kiss Me

Oh Bother, Another F's Gonna Kill Me

Oh Bother, Astronomers Frequently Give Killer Midterms

One Bug Ate Five Green Killer Moths

Oven-Baked Ants, Fried Gently, Keeps Moist

Only Boring Astronomers Find Gratification Knowing Mnemonics

Spectral sequence = temperature sequence

• Stars differ in spectral types due to different temperatures in their photospheres.

Example hydrogen: if T<10⁴ K, most electrons are in the n=1 orbital state => cannot absorb visible light (Balmer photons).

- If T~10⁴ K, most electrons are in the n=2 orbital state => can absorb visible light => Balmer absorption lines.
- If T>>10⁴ K, most electrons are in level 3 or higher, and cannot absorb visible light.

Balmer lines of hydrogen are most prominent about 10,000 K, peaking around A0. Other lines peak at different temperatures.

table 19-2	The Spectral Sequence					
Spectral class	Color	Temperature (K)	Spectral lines	Examples		
0	Blue-violet	30,000-50,000	Ionized atoms, especially helium	Naos (ζ Puppis), Mintaka (δ Orionis)		
В	Blue-white	11,000-30,000	Neutral helium, some hydrogen	Spica (α Virginis), Rigel (β Orionis)		
A	White	7500-11,000	Strong hydrogen, some ionized metals	Sirius (α Canis Majoris), Vega (α Lyrae)		
F	Yellow-white	5900-7500	Hydrogen and ionized metals such as calcium and iron	Canopus (α Carinae), Procyon (α Canis Minoris)		
G	Yellow	5200-5900	Both neutral and ionized metals, especially ionized calcium	Sun, Capella (α Aurigae)		
К	Orange	3900-5200	Neutral metals	Arcturus (α Boötis), Aldebaran (α Tauri)		
М	Red-orange	2500-3900	Strong titanium oxide and some neutral calcium	Antares (α Scorpii), Betelgeuse (α Orionis)		
L	Red	1300-2500	Neutral potassium, rubidium, and cesium, and metal hydrides	Brown dwarf Teide 1		
Т	Red	below 1300	Strong neutral potassium and some water (H_2O)	Brown dwarf Gliese 229B		

Stellar classification provides a mean to estimate physical characteristics of stars!

Method established by Annie Jump Cannon in 1901

Announcements

- VLA Tour Saturday Sept. 28
- Depart UNM at 8:00am from RH parking lot; 10am VLA+LWA1 tour Noon: lunch at picnic tables; return UNM
- Extra Credit will be assigned for attending tour

The H-R diagram

- Simple in concept, but a VERY powerful tool to examine stellar evolution
- Hertzsprung and Russell independently asked themselves: "What are the two basic things we know about stars"?
 - 1. Luminosity (or mass)
 - 2. Temperature (or color or spectral type)

H-R diagram is a plot of L (or M) vs. T (or color/B-V/spectral type) for stars.

Giants and dwarfs

 $L = 4\pi R^2 \sigma T^4$

- $L=4\pi\sigma R^2T^4$ => $L\propto R^2T^4$
- Four main sequence stars to scale

Mass-luminosity relation

$$L \sim M^{3.5}$$

Only valid for main sequence stars.

Order implies mass is an important property of an H-burning star.

Why? Because the weight of the outer layers in a star determines the nuclear fusion rate in the core.

Thus, the main sequence on the H-R diagram is also a sequence of mass:

What if we don't know the distance to the star?

We have the temp from B-V measurements, 5000K, but only an apparent brightness.

This could be on the main sequence, a giant or a supergiant?

The sizes of stars on an H-R diagram 106 Supergiant 104 10² Giants Luminosity (L 🛛 Sun 10-2 10-4 5,000 2,500 20,000 10,000 40,000

Surface temperature (K)

Line width and stellar size

- Atmospheric pressure affects width of absorption lines:
 - Lower pressure => decreased line width
 - Higher pressure => increased line width
- The atmospheric pressure is lower in the photosphere of an extremely large red giant, than in a main sequence star of similar temperature
 => giant's spectral lines are *narrower*

Two B8 stars: top is a supergiant, the bottom one is a main sequence.

Luminosity classes

- We classify stars in luminosity classes; I, II, III, IV and V (from narrow to wide, which also is from very luminous to less luminous)
- Two ways to classify stars: via the spectral type, and via the luminosity class.
- The full description of the Sun is G2 V.

Spectroscopic parallax

- Without knowing a star's distance, we can place it on the H-R diagram (spectral type and width of lines).
- This yields a luminosity, to be compared to the star's apparent magnitude.
- => distance can be estimated (to about $\pm 10\%$).

This is how we used to get distances to most stars!

Worksheet – Stellar Lifetimes

Given that $L \sim M^{3.5}$ for stars on the Main Sequence, and the fact that our sun has an expected lifetime of 10 billion years, derive a relation for the lifetime of stars on the Main Sequence.

Lifetime = $X M^z$ years

Use your new relation to answer the questions:

What is the expected lifetime for proxima centauri with 0.1 M_sun?

Mintaka in Orion is an O9II star believed to have a mass of 20 solar masses. What is its lifetime?

The Interstellar Medium

The interstellar medium (ISM)

- Space between stars is not a complete vacuum.
- Why is the ISM important?
 - Stars form out of it
 - Stars end their lives by returning gas to it

- The ISM has
 - -a wide range of structures
 - -a wide range of densities (10⁻³-10⁷ atoms/cm³)
 - -a wide range of temperatures (10 K 10⁷ K)

Overview of the ISM

- The ISM is a multi-component, multi phase medium
- The components are gas and dust, with dust comprising 1-2% of the ISM mass.
- The *phases*, meaning different kinds of clouds of gas and dust – hot, warm, cold, dense, rarefied.

Dust particles

- Grains with carbon, graphite, silicates
- Particles of ~10³ atoms, physical size d~10⁻⁷ m (range nm to μ m)
- Cause interstellar extinction
- Cause reddening

- Extinction is reduction in optical brightness
- Strong λ dependence on absorption and scattering
- Measure in magnitudes, A_V , at visible light

- Interstellar reddening: Scattering will both dim and redden the starlight.
- This is Rayleigh-scattering, which is proportional to $1/\lambda^4$

Thus, we need to be careful calculating distances to stars using the distance modulus:

$$m - M = 5 \log d - 5$$

If there is dust (and there will be) this becomes:

$$m - M = 5\log d - 5 + A$$

where *A* is the amount of light absorption in magnitudes at the wavelength you are measuring brightness of star.

- Dust is seen as winding bands, or spherical clouds (Bok globules)
- Can also be detected via polarization

- Dust is formed in low T regions (~<100K), since high T will cause collisions and sputtering of the grains => destruction of the grains.
- The surfaces of dust grains can act as a matrix to hold molecules close together, and allow chemistry to occur.
- These molecules are mostly hydrocarbon chains and other organic molecules (claims of protein, like DNA, seen in molecular cloud). This is the field of *cosmochemistry*.

The main ISM component: gas

- Interstellar gas is either neutral or ionized
- Ionized:
 - WIM, Warm Ionized Medium
 - HIM, Hot Ionized Medium
- Neutral:
 - WNM, Warm Neutral Medium
 - Cool NM
 - Cold NM

Component	Phase	Т(К)	n(cm⁻³)
Neutral	Cold (molecular)	10-50	10 ³ -10 ⁷
	Cool (atomic)	100	1
	Warm	8x10 ³	10 ⁻¹
lonized	Warm	10 ⁴	10 ⁰ -10 ⁴
	Hot	5x10 ⁵	10 ⁻³

Molecular clouds

- Cold (~10 K), dense $(10^3-10^7 \text{ molecules/cm3})$
- Cloud masses: $10^3 10^6 M_{\odot}$ (plenty of stars can form of this)
- Cloud sizes: a few to 100 pc
- In the Galaxy: ~5,000 molecular clouds
- Often buried deep within neutral atomic clouds

Molecular cloud seen as dark clouds in the optical

- Most abundant is H₂, but it has no allowed mm emission, so other "trace" molecules observed: CO, H₂O, NH₃, HCN etc.
- These molecules undergo rotational energy level transitions, emitting photons at mm λ

False color radio observations of CO in the Orion molecular cloud complex.

H₂ is symmetric - need to atoms of different mass to produce rotational transitions.

Molecules in space

Over 140 molecules detected in space so far.

Examples:

- 2 atoms: H_2 , CO, OH, CN
- 3 atoms: H₂O
- 6 atoms: CH_3OH
- 9 atoms C_2H_5OH
- 13 atoms: HC₁₀CN (cyanodecapentayne)

Acetamide in SgrB2 (9 atoms) contains a bond that link amino acids together (building bocks of proteins).

Molecules in space

Spectrum of Orion Molecular Cloud 1 (OMC1) from Blake et al. 1987

Component	Phase	Т(К)	n(cm⁻³)
Neutral	Cold (molecular)	10-50	10 ³ -10 ⁷
\langle	Cool (atomic)	100	1
	Warm	8x10 ³	10 ⁻¹
lonized	Warm	10 ⁴	10 ⁰ -10 ⁴
	Hot	5x10 ⁵	10 ⁻³

Atomic gas - HI

- Cool (and warm) atomic gas: T~100K (8000K), making up ~22% of the ISM
- 1-10 atoms/cm³ (diffuse)
- Tenuous clouds filling a large part of the interstellar space
- No optical emission WHY?
- $2 \times 10^9 M_{\odot}$ in the Galaxy

Cold, neutral hydrogen with electrons in n=1 level still emits energy through the "spin-flip transition".

How? Spinning electrons and protons are charged and act like magnets:

The spin-flip transition produces a 21-cm photon (1420 MHz).

b

Component	Phase	Т(К)	n(cm⁻³)
Neutral	Cold (molecular)	10-50	10 ³ -10 ⁷
	Cool (atomic)	100	1
	Warm	8x10 ³	1 0 ⁻¹
Ionized	Warm	104	10 ⁰ -10 ⁴
	Hot	5x10 ⁵	10 ⁻³

Emission nebulae - HII regions

- *nebula* = cloud (plural nebulae)
- ~5000/cm³ (diffuse)
- T≅10⁴ K (H essentially completely ionized)
- Sizes 1-20pc

In the Orion Nebula, the Trapezium stars provide energy for the whole nebula.

- UV energies are required to ionize the atoms
- Provided by hot and massive O, B stars
- e⁻ quickly recombine with the p
- Dominant emission H α , at λ = 656 nm. Color?

