#### Announcements

- Final Project see handout for instructions or retrieve from class web pages be consistent on data sheet!
- HW8 is due next Thursday
- Physics Day is April 13, student talks, free lunch Register before April 8:

https://physics.unm.edu/pandaweb/undergraduate/day2024/index.php







#### Moon and Venus over Geneva, Switzerland, 13 June 2002



Would you ever see Venus next to the full moon?

#### Venus basic data

Semi-major axis Eccentricity Tilt of orbit **Orbital Period Rotation** Period Diameter Mass Density V<sub>esc</sub> **Atmospheric Pressure** Temp Albedo

0.72 AU 0.0068 3.39° 225 Earth days 243 Earth days (retrograde) 95% Earth's 82% Earth's  $5.2 \text{ g/cm}^{3}$ 10.4 km/s 90 atm at surface 733 K 0.59

• Atmosphere so thick, can't see surface, at visible, UV or even IR wavelengths



- Strong upper level winds of up to 350 km/h
- Convection: hot air from equatorial regions to poles, cools, returns to equator. Keeps T very constant. Convection and winds give V-shape appearance.
- Yet at surface winds are only < 5 km/h due to intense pressure.

# • Different wavelengths penetrate the atmosphere to different depths => study different layers



# Missions to Venus

Soviet Venera 4 -18 (1967 - 1983)

Mariner 2, 5 and 10 (1962, 1967 and 1974)

Pioneer Venus (1978)

Magellan (1989)

Venus Express (ESA, launched 9 Nov 2005), in orbit since May 2006. Ended in 2014 (extended mission).

# Venus' atmosphere

# Table 9-4Chemical Compositions of ThreePlanetary Atmospheres

|                                   | Venus       | Earth       | Mars        |
|-----------------------------------|-------------|-------------|-------------|
| Nitrogen (N <sub>2</sub> )        | 3.5%        | 78.08%      | 2.7%        |
| Oxygen (O <sub>2</sub> )          | almost zero | 20.95%      | almost zero |
| Carbon dioxide (CO <sub>2</sub> ) | 96.5% -     | 0.035%      | 95.3%       |
| Water vapor (H <sub>2</sub> O)    | 0.003%      | about 1%    | 0.03%       |
| Other gases                       | almost zero | almost zero | 2%          |

#### 0.042%

- Hot, dry, dense: so hot at surface (~733K) it almost melts rock
- Very thick CO<sub>2</sub> atmosphere (strong greenhouse effect => high temps)
- 0.15% sulfuric acid  $(H_2SO_4)$  clouds and haze

# The clouds are composed of sulfuric acid droplets. These start at about 30 km altitude and extend up to 85 km.



Enormous pressure at surface (like ocean depth ~1km at Earth): much more gas in atmosphere.

No oceans: water stays in vapor form, breaks into H and O by UV photons, H escapes => very dry.

# Life on Venus?

- Phosphine (PH<sub>3</sub>) claimed to be detected in the atmosphere
  - No obvious chemical source
  - Temperatures in the middle cloud layer ~270 K, ok for life
- Probably a calibration error
- Two new missions to Venus in the works – DAVINCI and VERITAS



ALMA observations from Greaves et al 2020

How can we study surface through the thick clouds?

Use radar  $\Rightarrow$  long wavelength radio waves will pass through clouds.

Idea: EM radiation will pass through if  $\lambda >$  size of cloud particles.

Example: Water droplets in Earth's atmosphere have average size of 20  $\mu$ m = 20,000 nm. Compare to visible: 400 –700 nm.

Clouds block light, but your cell phone still works on a cloudy day!

## Goldstone/VLA radar

#### VENUS

Observations of Venus in 1990 and 1993 allowed for multi-polarization mapping of several bright volcanic regions [10]. Fig. 2 shows an image of the SC radar echo mapped with the Goldstone/VLA radar on August 23, 1991.



Figure 2: Radar reflectivity of Venus as mapped with the combined Goldstone/VLA radar on March 4, 1993. Sub-Earth latitude and longitude were -7.3° and 302.5°. Actual SC reflectivity is shown on left, topography and feature names are shown on the right. From [10].

#### Butler et al.

#### Radar echo measures altitude



space probe

time for signal to return tells you the altitude of surface feature.

Planet Surface

#### Topographic map of Venus Flatter than Earth, no evidence of plate boundaries. ⇒No large scale plate tectonics



#### 85% plains

15% highland plateaus (Ishtar Terra and Aphrodite Terra)



#### The surface of Venus: Magellan radar images

•Mountains (but not chains), rift valleys, volcanoes and lava flows. How young?



#### Craters on Venus



 Only ~1000 seen, spread randomly (unlike the Moon): All parts have about the same age.

 None < 3 km across (no meteor impacts < 30 m), smaller ones burn up in atmosphere

Sparseness of impact craters (doesn't look like Moon or Mercury!) implies that the surface is young, ~500 million years

#### Field of craters and the largest crater found on Venus (280 km diameter)



Rougher surface provides brighter radar echo => recent, unweathered event

# Mead Crater





#### Volcanoes on Venus



20



Shield volcano elevation map from Magellan radar data. About 100 km across.

Sif Mons, and a ~5 km long lava flow. Estimate lava flows within 10 million years.





"Pancake volcanoes" - eruptions of lava through vents close to ground. "Corona structures" - Concentric pattern, with a radial fracture =>

lava from inside caused surface to stretch.

Another type of volcano: "tick volcano", with ridges and valleys. A flat summit ~22 mi diameter.

Rim appears breached by lava flow



More evidence for past (?) volcanic activity: Venera 13 (Soviet lander 1981) found rocks similar to Earth's basalt.



#### A 2 km-wide channel, caused by lava. Total length is 6800 km (= 4200 miles). Compare to Nile at 6600 km.





Carved by hot lava, which should remain liquid for a long time due to extreme surface temperatures

#### More evidence of small-scale surface deformation

1 km

#### •Faults and fractures? Details not known.



#### Compression folding



# Rift valleys

• Similar in size to East African Rift (largest on Earth, tectonic motion between African and Eurasian plates).

• On Venus, rift valleys consequence of local activity since surface appear to be a single plate.



#### Is volcanism still ongoing?



• Venus Express infrared imaging in an atmospheric window at 1.02 microns reveals nine sites of hot-spot volcanism within past 2.5 million years and possibly 250,000 years

• S0<sub>2</sub> levels in atmosphere indicate recent volcanism, but may not constrain time to < 10 million years ago.<sup>29</sup>

# Volcanism Summary

- No volcanoes in chains => no plate tectonics
- Evidence for localized upwelling and fracturing
- Volcanoes *may* still be active today
- Surface is relatively young, ~500 million years, and entire planet about the same age. Contrast Earth.

# Why different from Earth?

• One idea: <u>more</u> active volcanism keeps crust thin, continually covers up craters. Rock may even be soft due to surface heat. Easy to break through ("flake tectonics").



- Second idea: the surface undergoes uniform upheaval about every ½ billion years. Heat builds up under thick, dead lithosphere until catastrophic surface meltdown.
- Is lithosphere thick or thin??? Evidence of young volcanoes favors thin crust.

Seismometers would be very nice to have on Venus...

# Interior presumably like Earth's (iron core, mantle, crust), but no magnetic field. Why?



### Climate History of Venus

- Like Earth, started with outgassing from volcanoes (mostly H<sub>2</sub>O, CO<sub>2</sub>, SO<sub>2</sub>) and perhaps additional water from cometary impacts.
- Young Sun only 70% as luminous as now, so Venus' early atmosphere would have been cooler. Probably liquid water? At least some water would have been gaseous. CO<sub>2</sub> dissolved in water and rocks.

Water vapor is greenhouse gas, so T would rise. Plus aging Sun got brighter.

• Hotter Sun + water vapor increases atmospheric temperature.

- Water could no longer be liquid as Sun got hotter (~ few 100 million years). Oceans start to evaporate, adding more H<sub>2</sub>O and CO<sub>2</sub> (and SO<sub>2</sub>) to atmosphere.
- Stronger Greenhouse effect => further evaporation => stronger Greenhouse effect, etc. Eventually, CO<sub>2</sub> even baked out of rocks into atmosphere. Temperature stops rising when all CO<sub>2</sub> removed.
  <u>Runaway Greenhouse Effect!</u>

Eventually, solar UV radiation would have broken  $H_2O$  apart. Hydrogen lost, O reacts to form molecules, atmosphere becomes dry.


## Comparison of Venus and Earth

- Both display volcanism and geological activity, BUT Venus has:
  - Slow rotational period
  - No magnetic field
  - No plate tectonics
  - No moon
  - No water
  - High surface temperature and dense atmosphere

#### Finally – what to make of retrograde rotation?

*Retrograde rotation* is hard to understand just from planetary formation from pre-solar system nebula







Massive impact reversed Venus' s rotation??? Or complex mechanism involving tidal interaction between Venus, Sun & Earth, and atmospheric braking? Unknown.

# Venus Express

- Aim: to study atmosphere
  - Interactions with surface
  - Interactions with solar wind
  - Circulation and composition as a function of depth
  - Radiative balance
- IR image of doubled-eyed vortex at south pole
- Evidence that Venus is slowing down
- Ended on Dec. 2014







- IR images
- 2.3 and 1.7µm
- Atmospheric structure at 35 and 20 km altitude respectively
- Stripes: wavelike atmospheric motion (tidal forces?) but nature still unknown.







"Canali" on Mars circa 1880

It will be possible to see cities on Mars, to detect navies in [its] harbors, and the smoke of great manufacturing cities and towns... Is Mars inhabited? There can be little doubt of it ... conditions are all favorable for life, and life, too, of a high order. Is it possible to know this of a certainty? Certainly.

> 1895 Samuel Leland Phelps, Professor in Astronomy regarding the construction of a 40 inch telescope at the University of Chicago.

#### dates of opposition



#### Terrestrial Planets' Spin, Habitability





HST image of Mars taken August 2003

### Images - from Earth Reddish, polar caps, seasonally changing patchiness



## Radar Image - from Earth Ices are highly reflective



Goldstone to VLA

### Radar Image - from Mars (Mars Express) Depth of Ice at the South Pole



# Space missions

- 58 missions as of Oct, 2021
- 26 successes and 30 failures
- 1M No.1 (USSR) failed to launch in 1960
- Mariner 4 (1965) first successful fly-by ulletViking Orbiters (1976) Mars Global Surveyor (1998-pres) Mars Climate Orbiter (1998-99, burned up, units! -2) Mars Odyssey Orbiter (2001-pres) Nozomi (Japan 2003, failed to go into orbit) Mars Express (ESA, 2003-present) Mars Reconnaissance Orbiter (NASA, 2006-pres) Currently: 1 lander (Insight), 5 rovers, 6 orbiters, 1 drone









## Mars basic data

Semi-major axis Period Rotation Inclination Diameter Mass Density  $V_{esc}$ Temp Albedo Atmospheric pressure level)

1.52 AU 1.88 Earth years 24<sup>h</sup> 37<sup>m</sup> 25.19° 0.533 Earth 0.107 Earth  $3934 \text{ kg/m}^3 = 3.94 \text{ g/cm}^3$ 5.0 km/s $-220 \text{ to } +70^{\circ} \text{ F or } 133 \text{ to } 293 \text{ K}$ 0.15 0.087 psi (0.6% Earth at sea