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ABSTRACT

We have recently discovered a supermassive binary black hole system with

a projected separation between the two black holes of 7.3 parsecs in the radio

galaxy 0402+379 (Rodriguez et al. 2006). This is the most compact supermassive

binary black hole pair yet imaged by more than two orders of magnitude. We

present Global VLBI observations at 1.3464 GHz of this radio galaxy, taken to

improve the quality of the HI data. Two absorption lines are found toward the

southern jet of the source, one redshifted by 370 ± 10 km s−1 and the other

blueshifted by 700 ± 10 km s−1 with respect to the systemic velocity of the

source, which, along with the results obtained for the opacity distribution over

the source, suggests the presence of two mass clumps rotating around the central

region of the source. We propose a model consisting of a geometrically thick disk,

of which we only see a couple of clumps, that reproduces the velocities measured

from the HI absorption profiles. These clumps rotate in circular Keplerian orbits

around an axis that crosses one of the supermassive black holes of the binary

system in 0402+379. We find an upper limit for the inclination angle of the twin

jets of the source to the line of sight of θ = 66◦, which, according to the proposed

model, implies a lower limit on the central mass of ∼ 7 × 108 M⊙ and a lower

limit for the scale height of the thick disk of ∼ 12 pc .
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1. Introduction

Given that most galaxies harbor supermassive black holes at their centers (Richstone

et al. 1998; Gebhardt et al. 2000), and that galaxy mergers are common, binary black

holes should likewise be common. An understanding of the evolution and formation of these

systems is important for an understanding of the evolution and formation of galaxies in

general (Silk & Rees 1998, Merritt 2006). Theoretical descriptions of supermassive binary

black hole systems and their accretion disks have been investigated by Hayasaki et al. 2007,

2008 and by MacFadyen & Milosavljević 2008.

Our ability to resolve the supermassive black holes in any given binary system depends

on the separation between them, on their distance from Earth, and on the resolving power of

the telescope used. It is believed that the longest timescale in the evolution of a supermassive

binary black hole system leading up to coalescence is the stage in which the system is closely

bound (∼ 0.1 - 10 pc), meaning that in most of these systems the black hole pair can only

be resolved by VLBI observations (in the case where both black holes are radio loud) which

provides resolutions of milliarcseconds and finer. This could explain why very few such

systems have been found (see review by Komossa (2003a) detailing observational evidence

for supermassive black hole binaries).

Some source properties like X-shaped radio galaxies and double-double radio galax-

ies, helical radio-jets, double-horned emission line profiles, and semi-periodic variations in

lightcurves have been taken as indirect evidence for compact binary black holes though other

explanations are possible. Some wider systems have, however, been found more directly. For

example, the ultra luminous galaxy NGC 6240, discovered by the Chandra X-ray observa-

tory, was found to have a pair of active supermassive black holes at its center (Komossa et al.

2003b), separated by a distance of 1.4 kpc. Another system that has been known for some

time is the double AGN (7 kpc separation) constituting the radio source 3C 75, which was

discovered by the VLA to have two pairs of radio jets (Owen et al. 1985).

The radio galaxy 0402+379 was recently found to contain two central, compact, flat

spectrum, variable components (designated C1 and C2), with a projected separation of 7.3

pc, a feature which had not been observed in any other compact source, making this system

the most compact supermassive binary black hole pair yet imaged by more than two orders of

magnitude, with an estimated system mass of a few 108 M⊙ (Maness et al. 2004; Rodriguez

et al. 2006).

Maness et al. (2004) performed spectral line observations of 0402+379 at 1.348 GHz.

HI absorption at a redshift of 560 km s−1 from the systemic velocity of the source (16,489

± 300 km s−1; Xu et al. 1994) was observed and attributed to a high velocity gas system,
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possibly due to a merger. Following this discovery, a spectrum of the HI region was taken in

2004 with the Westerbork telescope (Morganti et al. 2009), which showed two components

with velocities separated by 1000 km s−1. In this article we present Global VLBI observa-

tions taken to improve the quality of the HI data on 0402+379, with the purpose of better

understanding the origin of the deviation from the systemic velocity seen in the HI gas in

this source.

At the redshift of 0402+379 of 0.055, H0=75 km s−1 Mpc−1 and q0 = 0.5, a scale of 1

mas = 1.06 pc is obtained.

2. Observations

2.1. Global VLBI Observations

Global VLBI observations1 were made on 2007 March 17 at 1.3464 GHz. A single

intermediate frequency with a bandwidth of 16 MHz was observed with 256 channels in

both right and left circular polarizations, resulting in a frequency resolution of 62.5 kHz,

corresponding to a velocity resolution of 15 km s−1. Four level quantization was employed.

The net integration time on 0402+379 was 497 minutes.

Standard flagging, amplitude calibration, fringe-fitting, and bandpass calibration (3C

111 was used for both gain and bandpass calibration) were followed in the Astronomical

Image Processing System (AIPS; van Moorsel et al. 1996). AIPS reduction scripts described

in Ulvestad et al. (2001) were used for a large part of the reduction. Spectral line Doppler

corrections were also applied in AIPS. All manual editing, frequency averaging procedures,

imaging, deconvolution, and self-calibration were done using Difmap (Shepherd et al. 1995).

A clean cube was also produced by first performing a continuum subtraction using the task

UVLSF in AIPS, then using Difmap in order to obtain a cleaned map for each spectral

frequency, and finally combining all the maps into a cube with the task MCUBE in AIPS.

1Global VLBI = Very Long Baseline Array + Effelsberg + Jodrell Bank + Westerbork + Green Bank

Telescope + Onsala.
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3. Results

3.1. Radio Continuum

Figure 1 shows a naturally weighted 1.3 GHz image of 0402+379 from the 2007 Global

VLBI observations. The source consists of two diametrically opposed jets and a central

region containing two active nuclei not resolved at this frequency (see Rodriguez et al. 2006

for a detailed multi-frequency study of this radio galaxy). The northern jet is pointing in

the northeast direction whereas the southern jet is pointing in the southwest direction. The

orientation of the source at this frequency is consistent with that seen by the VLA at both

1.5 and 5 GHz (Maness et al. 2004) and by the VLBA at 0.3 GHz (Rodriguez et al. 2006).

The image shown in panel (a) was tapered and restored with a circular 25 mas synthesized

beam, in order to show better the extended structure in this radio galaxy. The source spans

∼ 1000 mas (∼ 1000 pc). The image shown in panel (b) was tapered and restored with a

8.15 × 3.72 mas synthesized beam. We see structure on scales of ∼ 500 mas (∼ 500 pc).

3.2. HI Absorption

Figure 2 shows HI absorption profiles taken from four regions of the source. The contin-

uum has been subtracted from the spectra using the task UVLSF in AIPS, which removes a

continuum model from the u,v data of all channels. The contours are taken from the 2007

Global VLBI observations at 1.3 GHz and the color scale from the 2005 VLBA observations

at 5 GHz. Two absorption lines are evident, which appear to be at two different locations

toward the southern jet. From this point on we will designate CW the western component,

where we see the stronger line; and CE the eastern component, where we see the weaker line.

Measurements of these lines are given in Table 1, where we also show the peak opacity and

the column density for both components, which we calculated according to,

NHI(cm
−2) = 1.8224 × 1018TS(K)

∫
∞

−∞

τ(v) dv(km s−1)

∼ 1.8224 × 1018TS(K)∆v(km s−1)
∑

τ(v),

(1)

where TS is the spin temperature, ∆v is the velocity resolution, and the summation is over

the channels where we detect absorption for CW and CE respectively.

We determined the central velocity of the HI absorption lines to be 16,927 ± 7 km s−1

and 15,856 ± 9 km s−1 for CW and CE respectively. From the most recent reported redshift

for 0402+379, as measured from optical emission lines (Rodriguez et al. 2006), we find that
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the observed line for CW is redshifted by 370 ± 10 km s−1 and for CE is blueshifted by 700

± 10 km s−1 from the systemic velocity of the source (16,558 ± 3 km s−1). No absorption

was found at either C1 or C2 (see Figure 2). We calculate a limit on the HI opacity at the

location of C1 and C2, and obtain < 0.17 and < 0.03 repectively. Figure 3 shows a map of

both the central velocity and width of the HI absorption profiles over the source.

Figure 4 shows a velocity slice of the continuum-subtracted cube (right panel), accom-

panied by the HI opacity distribution over the source (left panel). This result shows that

either the two locations where we find absorption are localized regions, rather than being

part of a more extended and perhaps homogeneous structure, or our sensitivity prevented

us from detecting HI absorption over a broader region. In order to explore this question we

calculated the lower limit on the peak opacity across the source assuming an intensity for the

line of 3σ, where σ is the rms noise in a single channel. The result is shown in Figure 5. We

see that outside the region where we detect absorption (compare with Figure 4) we would

need a peak opacity of at least ∼ 0.02, comparable to the peak opacity found for components

CE and CW, in order to have a 3σ detection. The fact that we did not detect this means

that the peak opacity in this region is even smaller than the lower limit found, suggesting

that what we are observing are two different, localized clumps, rather than a more extended

and homogeneous structure. The fact that we do not see absorption against C2 supports

this scenario.

We can estimate the HI mass of the clumps from the calculated column densities (Table

1) and assuming a spherical shape, according to the following relation,

m =
4π

3
r2NHImH (2)

where mH is the hydrogen atom mass and r is the radius of the clump estimated from the

opacity distribution map shown in Figure 4. For CW we used r ∼ 12 pc and for CE r ∼ 8

pc. We find a mass ranging from ∼ (7 − 400) × 103 M⊙ for component CW, and ∼ (1 −
60) × 103M⊙ for component CE, assuming spin temperatures ranging from 100 K to 6000

K. These masses are bigger than typical values of HI cloud masses of 60 M⊙ found in the

Milky Way (Stil et al. 2006).

4. Discussion

The results found from our 2007 Global VLBI observations at 1.3 GHz show two HI

absorption lines, one blueshifted and the other redshifted with respect to the systemic ve-

locity. The redshifted line (component CW) shows a FWHM of 300 ± 20 km s−1, and the
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blueshifted line (component CE) a FWHM of 170 ± 20 km s−1. This absorption must be

from neutral hydrogen along the line-of-sight to the central continuum source, but this gas

could be close to the nucleus or far away; could be falling in, outflowing, or in rotation.

Assuming a virialized cloud of ∼ 104 M⊙ and a radius of 5 pc we get, from the virial

theorem, a velocity for the H atoms of ∼ 3 km s−1. On the other hand, if we use the high

end temperature of 104 K the thermal speed of an H atom is ∼ 15 km s−1. Thus, under these

assumptions, at most ∼ 20 km s−1 of the line widths observed for both CE and CW could

be accounted for, leaving a considerable balance which could be attributed to the proximity

of these components to the central parsecs of the source, where the gravitational potential

well is deepest.

Another possibility is that the broad line widths and large velocities for one or both

components are due to a jet-cloud interaction. Oosterloo et al. (2000) studied the Seyfert 2

galaxy IC 5063, where a strong interaction between the radio jet and a molecular cloud of the

interstellar medium (ISM) is ocurring at the position of the western radio lobe of the source.

The most prominent absorption feature found is blueshifted over 600 km s−1 with respect

to the systemic velocity, a value that lies outside the range allowed by rotational kinematics

of the large-scale HI disk. As an effect of the outflow produced by the interaction as well

as the geometry of the source, there will be components moving both away and towards the

observer. Since only absorption in those components in front of the radio continuum can be

observed, the blueshifted component was the only one detected. Returning to our case, it is

very unlikely that the motion found in both components, CW (redshifted component) and CE

(blueshifted component), which are only a few parsecs apart, is due to jet-cloud interactions,

since this would require a dramatic change in the way the southern jet is moving, on scales

of only a few parsecs.

We consider that both CW and CE are part of the same rotating disk structure, of which

we only see a couple of clumps, and for the remainder of the discussion, we assume that this

is the case and propose a model that reproduces the observations. We also assume that the

mass of component C1 is significantly smaller than that of component C2, thus not affecting

the stability of the disk. This type of binary, where the two black holes have different masses,

are thought to occur more frequently, since minor galactic mergers are more common than

major mergers in hierarchical models of galaxy formation (Armitage & Natarajan 2002).

We realize that in a thin disk the binary would likely clear out all material within twice

the radius of the binary (MacFadyen & Milosavljević 2008), but perhaps this process is less

efficient for a thick disk, or material is resupplied.



– 7 –

4.1. Rotating Disk

If we assume that components CW and CE are rotating about C2 in circular Keplerian

orbits lying on the same plane, the only way of reproducing the measured velocities (accord-

ing to our proposed model, explained below) is by requiring a very high central mass, of at

least ∼ 1010M⊙, in disagreement with previous estimates (Rodriguez et al. 2006) as well as

typical supermassive black hole masses.

Thus, we propose a model consisting of a geometrically thick disk, rather than a ge-

ometrically thin disk, rotating in a Keplerian circular orbit, which can be part of a larger

scale torus, that can reproduce the velocities that we observe from the HI absorption, at the

measured locations. We assume that CW and CE are rotating in parallel planes, both offset

from the plane in which C2 lies. The distances between these planes are free parameters in

our model. We call d1 the separation between C2 and the center of the circular orbit 1, that

CE is following; and d2 the separation between C2 and the center of the circular orbit 2,

that CW is following. Figure 6 is a cartoon showing the configuration of the model we are

proposing.

We assume that the rotation axis crosses component C2, which is at the systemic velocity

of 16,558 ± 3 km s−1 (Rodriguez et al. 2006), a natural assumption considering that the jets

of this source seem to be emerging from C2, not from C1. Also, we suggest that the two

absorption lines that are observed could be explained by the presence of two mass clumps,

both part of a clumpy geometrically thick disk structure (an idea that is supported by the

opacity distribution map obtained, Figure 4).

We let d1 and d2 vary over a range of values and calculate, for each different combination

(d1,d2) what the orientation in space of the thick disk should be in order to best reproduce

the observed velocities, via a minimization routine. After obtaining the inclination of the

thick disk for each pair (d1,d2), we again apply a minimization routine in order to find the

combination (d1,d2) that best reproduces the measured velocities.

This same procedure was applied with different values of the central mass, which allowed

us to set a lower limit on this quantity of ∼ 1.4 × 108 M⊙ (by requiring that the difference

between the velocities predicted by the model and the observed velocities was smaller than

1σ). See Appendix A for more details on the model. There is no upper limit on the mass

that we can find using this model, since for greater masses we can always find an inclination

that reproduces very accurately the measured values (the inclination angle, with respect to

the line of sight, decreases as we increase the central mass).

Rodriguez et al. (2006) made an estimate of the central mass of 0402+379, based on an

optical spectrum of the core of this radio galaxy taken with the Hobby-Eberly Telescope,
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which shows a red shoulder suggesting two components with a velocity separation of ∼300

km s−1. At the observed projected separation between the nuclei of 7.3 pc, an orbital velocity

of 300 km s−1 implies a system mass of 1.5×108 M⊙. For this particular value of the central

mass, our model gives an inclination of the rotation axis of ∼ 85◦ with respect to the line

of sight, thus requiring the source to be very close to the plane of the sky. A value for d2

of ∼ 12 pc is obtained, which sets a lower limit on the scale height of the thick disk. This

value is consistent with observed parameters of supposed tori (see for example Peck et al.

1999, where a 20 pc scale height torus is estimated for the radio source 1946+708).

Considering the size of our synthesized beam and the extension of the two regions where

absorption is observed, we were not able to measure a significant velocity gradient within CW

or CE. The small variations in velocity found are not reproduced by our model. However,

other factors could influence these mass concentrations that we are not taken into account

in our model, such as proper motions associated with each clump.

4.2. More Constraints on the Inclination of the Disk

Assuming that C2 is the origin of the radio emission on parsec scales, we can constrain

the orientation of 0402+379. In the simple beaming model for simultaneously ejected jet

components moving in opposite directions, the arm length ratio D depends on the intrinsic

speed β = v/c and the angle of the twin jets to the line of sight θ (Taylor & Vermeulen

1997). The arm length ratio, D, is given by

D =
dN

dS
=

(
1 + β cos θ

1 − β cos θ

)
, (3)

where the apparent projected distances from C2 (assumed to be the origin of radio emission)

are dN for the northern jet (approaching side) and dS for the southern jet (receding side).

From this we get β cos θ = 0.4 (Rodriguez et al. 2006), a result that implies that the intrinsic

velocity must be at least 0.4c and θ must be less than 66◦. Based on the observed morphology

of the source, we can assume a minimum value for θ of ∼ 30◦. According to our proposed

model (see §4.1) these constraints on the inclination set a lower limit on the central mass of

the system of ∼ 7 × 108 M⊙, for θ = 66◦. Angles as small as ∼ 30◦ are allowed, however,

they require a very large mass (∼ 1010 M⊙).

Figure 7 is a cartoon showing the results obtained by our model for a central mass of

7 × 108 M⊙ (θ = 66◦), overlaid with 5 GHz contours of 0402+379 from the 2005 VLBA

observations. We can see that the rotation axis aligns very well, within ∼ 10◦, with the
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jet axis, which was not a constraint imposed by the model. If we asume that the center of

the orbit that C1 follows is located at the position of C2, and also that component C2 is

significantly more massive than C1, we obtain an orbital velocity for C1 of ∼ 580 km s−1

(for a mass of 7×108 M⊙ and θ = 66◦). This is consistent with the current limit from VLBI

monitoring of < 26, 400 km s−1.

5. Conclusion

Global VLBI observations at 1.3 GHz were performed on the radio galaxy 0402+379,

the most compact supermassive binary black hole pair yet imaged. Two absorption lines

were found toward the southern jet of the source, one redshifted by 370 ± 10 km s−1 and the

other blueshifted by 700 ± 10 km s−1 with respect to the systemic velocity of the source.

A model consisting of a thick disk, of which we only see a couple of clumps, was de-

voloped in order to reproduce the velocities measured from the HI absorption profiles. These

clumps, components CW and CE, rotate in circular Keplerian orbits around an axis that

crosses one of the supermassive black holes of the binary system in 0402+379, component

C2. We found an upper limit for the inclination angle of the twin jets to the line of sight of

θ = 66◦, which, according to the proposed model, implies a lower limit on the central mass

of ∼ 7 × 108 M⊙ and a lower limit for the scale height of the thick disk of ∼ 12 pc .

Facilities: Very Long Baseline Array, Effelsberg, Jodrell Bank, Westerbork, Green Bank

Telescope, Onsala 25m telescope
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A. Rotating Disk Model

Figure 6 is a cartoon showing the configuration of the model we are proposing. We show

component C2, which is chosen as the origin, as well as components CE, with coordinates

(x1,y1), and CW, with coordinates (x2,y2). The two circular orbits drawn are the trajectories

CE and CW would follow, respectively, on the rotating thick disk. Also, we show the

projection of the system on the plane of the sky, since that is what we actually observe.

Let us assume our disk has an arbitrary orientation in space, specified by the normal

unitary vector n̂ = (nx,ny,nz). Since n̂ is unitary we have,

n2
x + n2

y + n2
z = 1 (A1)

According to Kepler’s Laws, a body moving around a mass M , at a radius R, has a

velocity given by,

V =

√
GM

R
(A2)

Thus, the angular velocity is given by,

ω =
√

GM(R)−3/2 (A3)

If −→ω is the angular velocity vector of our rotating thick disk, and
−→
R is any point on the

disk, then the tangential velocity
−→
V is given by,

−→
V = −→ω ×−→

R (A4)

where −→ω = ωn̂ and
−→
R = −→r − −→

d , where
−→
d is the separation between the origin and

the center of the circular orbit we are considering, and −→r is the position vector of the point

we are considering (in our case, the coordinates of either CE or CW). Thus, we have,

−→
R = (Rx, Ry, Rz) = (x + dnx, y + dny, z + dnz) (A5)

Let the plane x-y be the plane of the sky and z be the line of sight direction. We want

to know the z component of the tangential velocity
−→
V , because that component is the one

we can measure (from our absorption lines), which is given by:

Vz =
−→
V .ẑ = ω(nxRy − nyRx) (A6)

Finally, we can also use the fact that −→ω and
−→
R have to be orthogonal, that is,

−→ω .
−→
R = 0 =⇒ nxx + nyy + nzz + d = 0 (A7)



– 12 –

We can now put everything together and get an expression for Vz,

Vz =
√

GM [nx(y + dny) − ny(x + dnx)]
[
(x + dnx)

2 + (y + dny)
2 + (z + dnz)

2
]−3/4

(A8)

where

z =
−d − xnx − yny

nz

and nz =
√

1 − n2
x − n2

y (A9)

Thus, we have an equation that gives us the z component of the tangential velocity of

any point with a circular orbit in our rotating disk, in terms of the x and y components of

the normal unitary vector of the disk, nx and ny, and in terms of the x and y components

of any point in the disk.

There are two locations in our source, where we can measure the velocity. Let us define

Vz1,o and Vz2,o as the observed velocities of CE and CW respectively; and Vz1,c and Vz2,c the

calculated velocities according to Equation A8. Finally let us define the function that we will

minimize in order to obtain the inclination of the thick disk that reproduces the measured

velocities best,

J =
|Vz1,o − Vz1,c|

|Vz1,o|
+

|Vz2,o − Vz2,c|
|Vz2,o|

(A10)

For a particular value of the central mass of the system, M , we went through the

following routine in order to find the inclination of the thick disk, more precisely nx and ny

(since nz can be determined in terms of these two quantities): We calculated the function

J for every combination of (nx, ny), with the constraint that n̂ is unitary. By minimizing

J we found the best pair (nx, ny). Since d1 and d2 are also free parameters, we let them

vary over a range, so for every combination (d1, d2) we followed the procedure mentioned

above and found the best pair (nx, ny). After having done this for every combination (d1,

d2), again by a minimization routine, we found the best pair (d1, d2). Thus, for a particular

value of the central mass we were able to find the inclination of the disk that reproduced

the observed velocities best. This same routine was also followed for different values of the

central mass, which let us find a lower limit on this quantity of ∼ 1.4×108 M⊙, by requiring

that the difference between the velocities predicted by the model and the observed velocities

was smaller than 1σ, with:

σ =

√
(Vz1,o − Vz1,c)

2

∆2
1

+
(Vz2,o − Vz2,c)

2

∆2
2

(A11)

where ∆1 and ∆2 are the errors in the measurements of Vz1,o and Vz2,o respectively.
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Table 1. Gaussian Functions Fitted to HI Absorption Profiles in the Southern Jet.

Component ∗ Amplitude (mJy) Central Velocity (km s−1) FWHM (km s−1) τpeak NHI (cm−2)

CW 2.8 ± 0.1 16,927 ± 7 300 ± 20 0.025 ± 0.001 (1.303 ± 0.006) ×1021 a

(7.82 ± 0.03) ×1022 b

CE 1.5 ± 0.2 15,856 ± 9 170 ± 20 0.018 ± 0.002 (4.1 ± 0.1) ×1020 a

(2.44 ± 0.07) ×1022 b

∗CW and CE refer to the western and eastern jet components where we find absorption lines respectively.

aAssuming a spin temperature of 100 K

bAssuming a spin temperature of 6000 K
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Fig. 1.— Naturally weighted 2007 Global VLBI image of 0402+379 at 1.3 GHz. Contours

are drawn beginning at 3σ and increase by factors of 2 thereafter. In (b) the synthesized

beam is 8.15 × 3.72 mas (shown in the bottom left corner). The peak flux density is 0.13

Jy/beam and rms noise is 0.02 mJy. In (a) the image was tapered and restored with a

circular 25 mas synthesized beam (shown in the bottom left corner). The peak flux density

is 0.46 Jy/beam and rms noise is 0.05 mJy.
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Fig. 2.— HI absorption profiles taken from four regions of the source (components C1, C2,

CE, and CW). The arrow in the center of each spectrum shows where the systemic velocity

is (Rodriguez et al. 2006), and the velocity resolution is 15 km s−1. The rms noise in a single

channel is 0.14 mJy/beam. The contours are taken from the 2007 Global VLBI observations

at 1.3 GHz and are set at 10σ, increasing by a factor of 2 thereafter; and the color scale

image is taken from the 2005 VLBA observations at 5 GHz.
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Fig. 3.— (a) Map of the central velocity and (b) width of the HI absorption profiles in the

source. Both maps were generated fitting Gaussian functions at each pixel where at least a

3σ detection of a line was found. The color scale in both images is in units of km s−1. The

contours are taken from the 2007 Global VLBI observations at 1.3 GHz and are set at 3σ,

increasing by a factor of 2 thereafter.
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Fig. 4.— Velocity slice of the continuum-subtracted cube described in §3.2 (right panel), ac-

companied by the integrated HI opacity distribution over the source (left panel), in which we

indicate where the slice was taken. The map was generated by combining a continuum im-

age of the source with the continuum-subtracted cube. To generate the opacity distribution

shown we did a one-dimensional zeroth moment fitting to each row, requiring a continuum

emission of at least 0.12 mJy and a line emission of at least 0.75 mJy (corresponding to ∼ 5σ

respectively). The contours are taken from the 2007 Global VLBI observations at 1.3 GHz

and are set at 3σ, increasing by a factor of 2 thereafter.
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Fig. 5.— Calculated lower limit on the peak opacity across the source assuming an intensity

for the line of 3σ. The contours are taken from the 2007 Global VLBI observations at 1.3

GHz and are set at 3σ, increasing by a factor of 2 thereafter.
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Fig. 6.— Configuration of the model we are proposing. Shown is component C2, chosen as

the origin, as well as components CE, with coordinates (x1,y1), and CW, with coordinates

(x2,y2). The two circular orbits drawn are the trajectories CE and CW would follow, respec-

tively, on the rotating thick disk, shown in yellow. An inclination angle of ∼ 75◦ between

the rotation axis and the line of sight was used.
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Fig. 7.— Results obtained from the rotating thick disk model, projected on the x-y plane

(RA and DEC plane), overlaid with 5 GHz contours from the 2005 VLBA observations. The

blue section of the rotation axis is pointing towards us, whereas the red section is pointing

away. For a mass of 7× 108 M⊙ an inclination angle of ∼ 66◦ between the rotation axis and

the line of sight is obtained. The position of component C2, chosen as the origin, is shown,

as well as the position of C1, CE and CW. The two green circular orbits drawn are the

trajectories CE and CW would follow, respectively, on the rotating thick disk. The yellow

circular orbit is the trajectory C1 would follow assuming C2 as the center of the orbit.
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